Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30077
A Preliminary Study on the Eventual Positivity of Irreducible Tridiagonal Sign Patterns

Authors: Berlin Yu

Abstract:

Motivated by Berman et al. [Sign patterns that allow eventual positivity, ELA, 19(2010): 108-120], we concentrate on the potential eventual positivity of irreducible tridiagonal sign patterns. The minimal potential eventual positivity of irreducible tridiagonal sign patterns of order less than six is established, and all the minimal potentially eventually positive tridiagonal sign patterns of order · 5 are identified. Our results indicate that if an irreducible tridiagonal sign pattern of order less than six A is minimal potentially eventually positive, then A requires the eventual positivity.

Keywords: Eventual positivity, potentially positive sign pattern, tridiagnoal sign pattern, minimal potentially positive sign pattern.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1328360

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902

References:


[1] M. Catral, D. D. Olesky, P. van den Driessche, Allow problems concerning spectral properties of sign patter matrices: A survey, Linear Algebra Appl. 430(2009) 3080-3094.
[2] E. M. Ellison, L. Hogben, M. J. Tsatsomeros, Sign patterns that require eventual positivity or require eventual nonnegativity, Electron. J. Linear Algebra 19(2010) 98-107.
[3] M. Catral, L. Hogben, D. D. Olesky, P. van den Driessche, Sign patterns that require or allow power-positivity, Electron. J. Linear Algebra 19(2010) 121-128.
[4] A. Berman, M. Catral, L. M. Dealba, A. Elhashash, F. Hall, L. Hogben, I. J. Kim, D. D. Olesky, P. Tarazaga, M. J. Tsatsomeros, P. van den Driessche, Sign patterns that allow eventual positivity, Electron. J. Linear Algebra 19(2010) 108-120.
[5] F. Hall, Z. Li, Sign pattern matrices, in: L. Hogben(Ed.), Handbook of Linear Algebra, Chapman & Hall/CRC Press, Boca Ration, 2007.
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1995.