
 
Abstract—Seismic analysis of steel buildings is usually based on 

the use of the concentrated mass (ML) matrix and the Rayleigh 
damping matrix (C). Similarly, the initial stiffness matrix (KO) and the 
first two modes associated to lateral vibrations are commonly used to 
develop the matrix C. The evaluation of the accuracy of these practices 
for the particular case of steel buildings with moment-resisting steel 
frames constitutes the main objective of this research. For this, the 
nonlinear seismic responses of three models of steel frames, 
representing low-, medium- and high-rise steel buildings, are 
considered. Results indicate that if the ML matrix is used, shears and 
bending moments in columns are underestimated by up to 30% and 
65%, respectively, when compared to the corresponding results 
obtained with the consistent mass matrix (MC). It is also shown that if 
KO is used in C instead the tangent stiffness matrix (Kt), axial loads in 
columns are underestimated by up to 80%. It is concluded that the 
consistent mass matrix should be used in the structural modelling of 
moment resisting steel frames and the tangent stiffness matrix should 
be used to develop the Rayleigh damping matrix.  

 
Keywords—Moment-resisting steel frames, consistent and 

concentrated mass matrices, nonlinear seismic response, Rayleigh 
damping. 

I. INTRODUCTION, LITERATURE REVIEW AND OBJECTIVES 

ROPER modeling of the mass (M), damping (C) and 
stiffness (K) matrices represents a very important step in 

estimating the seismic response of any structural system, 
including moment-resisting frames (MRF). The simplest 
representation of the mass matrix is the lumped one where the 
mass of the structure is concentrated at the translational degrees 
of freedoms (DOF), which is usually determined by statics. It 
gives a diagonal mass matrix with nonzero values associated to 
such translational DOF. However, a finite value of rotational 
inertia can be estimated for the rotational DOF by calculating 
the moment of inertia of the mass of a portion of the beams with 
respect to the nodes. Alternatively, it is possible to develop a 
matrix known as the consistent mass matrix in such a way that 
inertia forces are associated to both translational and rotational 
DOF. Because the rotational inertia effects are better 
represented while using the consistent mass matrix, the 
responses are expected to be more accurate when compared to 
those of the lumped mass matrix.  

Dissipation of energy has also a significant effect on the 
structural response. It is expected to be more relevant for steel 
structures since dissipation of energy is supposed to come from 
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several sources. In modal spectral dynamic analysis procedures 
specified in many building codes, dissipation of energy is taken 
into account by using a linear equivalent viscous damper with 
5% of critical damping in such a way that energy dissipation 
sources are approximately included. It is worth noting that there 
has been a number of investigations where energy dissipation 
due to plastic deformations is approximately modeled by using 
an equivalent viscous damping model [1]-[5]. Unfortunately, it 
is not possible to mathematically represent each of the energy-
dissipating mechanisms existing in real buildings. This is the 
main reason why dissipation of energy is highly idealized for 
practical purposes in seismic codes.  

A reasonable approach, particularly used in the case of steel 
building structures, consists in modeling dissipation of energy 
generated by the thermal effects of repeated elastic straining of 
the material grains, and from the friction among the boundaries 
of the grains by a linear viscous damper, while that produced 
by plastic deformations is handled by considering the 
constitutive relationship between forces and deformations. 
Viscous energy is traditionally represented by the Rayleigh 
Damping Model, where the damping matrix C is expressed as a 
combination of the M and K matrices by using two 
proportionality coefficients, which in turn are derived by 
assuming damping ratios, usually at the first and second modes. 
It is convenient at this state to identify two particular cases of 
the stiffness matrix: the initial elastic stiffness matrix (Ko) 
associated to small deformations and the tangent stiffness 
matrix (Kt) associated to inelastic deformations. 

The effects of using different models for the M, C, and K 
matrices, as discussed below, have been investigated by many 
researchers [6]-[20]. Nevertheless, there are many issues that 
have not been considered. The main objectives of this paper are 
to calculate and compare the seismic responses of steel 
buildings with MRF considering different ways of modeling the 
mass and damping matrices. This is discussed further below. 

One of the first investigations concerning the mass 
distribution in a structure was conducted by Archer [6], who 
analyzed the effects of using the consistent mass matrix on 
beams. Hayashikawa and Watanabe [7] presented an analytical 
method to determine eigenvalues of continuous beams by using 
a general solution for the Bernoulli-Euler differential equation. 
Stavrinidis et al. [8] proposed a mass matrix formulation based 
on finite elements, which was improved with respect to the 
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consistent mass matrix in terms of computational effort. 
Hansson and Sandberg [9] presented an approach to calculate 
the mass matrix for diagonal and mixed mass matrices. Gulkan 
and Alemdar [10] proposed functions for beam segments 
supported on elastic foundations to obtain analytic expressions 
for the coefficients of the element stiffness and the consistent 
mass matrices. Michaltsos and Konstantakopoulos [11] 
conducted dynamic analyses of a thin-walled tower considering 
additional concentrated masses and the effect of the rotational 
inertia of such masses. Archer and Whalen [12] proposed a 
mass matrix model, which includes translational and rotational 
DOF. The resulting matrix is diagonal and, similar to the 
consistent mass matrix, it maintains the translational and 
rotational rigid body inertias. Many other important 
contributions regarding the mass matrix of structures can be 
found in the literature [13]-[20]. 

Issues regarding the formulation of the damping matrix have 
also been addressed. One of the first works was conducted by 
Rea et al. [21]. Wilson and Penzien [22] proposed two 
numerical methods for calculating the damping matrix. Crips 
[23] made a comparative analysis concerning the effects of 
different damping models on the dynamic response of R/C 
structures. Léger and Dussault [24] studied the effect of the 
mathematical modeling of viscous damping on the seismic 
energy dissipation of multi-degree-of-freedom (MDOF) 
systems. Kowalsky and Dwairi [25] evaluated the accuracy of 
using the equivalent viscous damping concept while applied to 
the direct displacement-based seismic design. Val and Segal 
[26] studied the differences between responses of structures 
modeled as SDOF systems with viscous and hysteretic 
damping. Li and Wu [27] by using SDOF systems proposed 
relationships between equivalent damping and ductility 
according to the direct displacement-based seismic design 
(DBSD) method. Many important contributions to this field 
were also made by other researchers [28]-[37]. 

There is no doubt about the important advances in the state 
of the art of the research mentioned above regarding the effects 
of modeling mass and damping matrices on the seismic 
behavior of buildings. Nevertheless, there are many aspects that 
need additional discussions. Certainly, many investigations 
have been oriented to compare the responses of structures 
considering the lumped and consistent mass matrices [6]-[20], 
or to estimate the accuracy of using the Rayleigh damping 
matrix. However, many issues for the case of low-, mid- and 
high-rise steel buildings idealized as complex (MDOF) 
systems, considering several response parameters at both local 
and global levels, have not been studied.  

The main objective of this paper is the calculate the nonlinear 
seismic responses of steel MRF, idealized as 2D-MDOF 
complex systems, subjected to several strong earthquake 
motions with the aim of studying some issues regarding the 
modeling of the mass and damping matrices. Global (inter-story 
displacements, and inter-story shears) and local (axial loads and 
bending moments) demand parameters are considered. The 
specific objectives are: 
(1) To calculate the seismic demands assuming that the mass 

matrix in the structural models is lumped (ML) and compare 

such demands with those obtained when the consistent 
mass matrix (MC) is used.  

(2) To estimate the accuracy of considering the initial stiffness 
matrix in the formulation of the Rayleigh damping matrix 
by comparing the results to those obtained with the tangent 
stiffness matrix. 

II. METHODOLOGY AND PROCEDURE 

Three steel buildings modeled as complex 2D-MDOF 
systems and 15 strong ground motions, which are consistent 
with the seismic hazard of the area where the models are 
located, are considered in the investigation. The Ruaumoko 
Software [38] is used to carry out the nonlinear time history 
analyses required. Large displacement effects are considered in 
the nonlinear dynamic analysis. The vertical and horizontal 
structural members are modeled as beam-columns and as 
beams, respectively. Three DOF per node are used. The 
hysteretic behavior of the members is modeled as bilinear with 
3% of post-elastic stiffness. The interaction between axial loads 
and bending moments is defined by the interaction surface 
proposed by Chen and Atsuta [39]. Additional information 
regarding the models and seismic records, are given below. 

 

 

Fig. 1 Plan and elevation: 3-Level Model 
 

 

Fig. 2 Plan and elevation: 9-Level Model 
 

The 3-, 9-, and 20-story steel building models, which were 
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specifically designed to be used in a very important research 
project [40], are adopted in this paper to reach the objectives 
mentioned above. The plan and elevation (geometry) of the 
models are shown in Figs. 1-3. The perimeter MRF of such 
models constitute the bi-dimensional (2D) models used in the 
study. The lateral vibration fundamental periods of the 3-, 9- and 
20-story models, which will be denoted as Models 1, 2 and 3, are 
1.03s, 2.38s and 4.07s, respectively. The cross sections of beams 
and columns of Models 1 and 2 are provided in Table I; the 
corresponding sections for Model 3 are shown in Table II. 

 

 

Fig. 3 Plan and elevation: 20-Level Model 
 

TABLE I 
BEAM AND COLUMN SECTIONS, PMRF OF MODELS 1 AND 2 

Model Story 
Columns 

Girders 
Exterior Interior 

3-Level 

1 W14×257 W14×311 W33×118

2 W14×257 W14×311 W30×116

3/Roof W14×257 W14×311 W24×68 

9-Level 

Basement-1 W14×370 W14×500 W36×160

1 W14×370 W14×500 W36×160

2 W14×370 W14×500 W36×160

3 W14×370 W14×455 W36×135

4 W14×370 W14×455 W36×135

5 W14×283 W14×370 W36×135

6 W14×283 W14×370 W36×135

7 W14×257 W14×283 W30×99 

8 W14x257 W14x283 W27X84 

9/roof W14x233 W14x257 W24x68 

 

In order to represent the seismic hazard, the models are excited 
by 15 seismic records that are representative of the site where the 
models are located. The main characteristics of the ground 
motions are summarized in Table III. The deformation of any of 
the models is elastic under the action of any of the seismic 
records. To have inelastic responses, the seismic records are 
scaled up to produce different levels of deformation. They are 
scaled according to the geometric mean of spectral acceleration 
(𝑆𝑎 ), obtained by “averaging” the pseudo-acceleration (Sa) 
[41] over a range of vibration periods as follow:  

 

𝑆𝑎 𝑇 , … . , 𝑇 ∏ 𝑆 𝑇 /                    (1) 
 

In (1), the m parameter represents the number of vibration 
periods of interest. This intensity measure takes into account the 

elongation of the first lateral vibration period due to nonlinear 
deformation and the contribution of the higher modes of 
vibration. The periods used to calculate Saavg range from 0.2 T1 
to 1.5 T1, with uniform increments of 0.01 s, where T1 is the 
fundamental period of the structure. The values of Saavg range 
from 0.2 g up to 1.0 g with uniform increments of 0.2 g for the 
3-story building, whereas they range from 0.1 g up to 0.5 g with 
uniform increments of 0.1 g, for the 9-, and 20-story models. 

 
TABLE II 

BEAM AND COLUMN SECTIONS, PMRF OF MODEL 3 

Story 
Columns 

Girders 
Exterior Interior 

Basement-1 15X15X2.00 W24X335 W14X22 

Basement-2 15X15X2.00 W24X335 W30X99 

1 15X15X2.00 W24X335 W30X99 

2 15X15X2.00 W24X335 W30X99 

3 15X15X1.25 W24X335 W30X99 

4 15X15X1.25 W24X335 W30X99 

5 15X15X1.25 W24X335 W30X108

6 15X15X1.00 W24X229 W30X108

7 15X15X1.00 W24X229 W30X108

8 15X15X1.00 W24X229 W30X108

9 15X15X1.00 W24X229 W30X108

10 15X15X1.00 W24X229 W30X108

11 15X15X1.00 W24X229 W30X99 

12 15X15X1.00 W24X192 W30X99 

13 15X15X1.00 W24X192 W30X99 

14 15X15X1.00 W24X192 W30X99 

15 15X15X0.75 W24X131 W30X99 

16 15X15X0.75 W24X131 W30X99 

17 15X15X0.75 W24X131 W27X84 

18 15X15X0.75 W24X117 W27X84 

19 15X15X0.75 W24X117 W24X62 

20/Roof 15X15X0.50 W24X84 W21X50 

 
TABLE III 

STRONG MOTION RECORDS 

Designation Station 
Magnitude 

(Mw) 
PGA (m/s2) 

Dominant 
Period (s)

N-S E-W N-S E-W 

LA1 Imperial Valley, 1940 6.9 4.52 6.63 0.53 0.46 

LA2 Imperial Valley, 1979 6.5 3.86 4.80 0.16 0.34 

LA3 Landers, 1992 7.3 4.14 4.17 0.73 0.33 

LA4 Kern, 1952 7.3 5.11 3.53 0.25 0.23 

LA5 Loma Prieta, 1989 7 6.53 9.50 0.21 0.20 

LA6 
Northridge, 1994, 

Newhall
6.7 6.65 6.45 0.31 0.31 

LA7 
Northridge, 1994, 

Rinaldi
6.7 5.23 5.69 0.39 0.29 

LA8 
Northridge, 1994, 

Sylmar
6.7 5.59 8.03 0.31 0.36 

LA9 
North Palm Springs, 

1986
6 10.01 9.68 0.17 0.21 

LA10 Coyote Lake, 1979 5.7 5.79 3.28 0.15 0.21 

LA11 Morgan Hill, 1984 6.2 3.12 5.36 0.18 0.16 

LA12 
Parkfield, 1966, 

Cholame 5W
6.1 7.65 6.20 0.37 0.30 

LA13 
Parkfield, 1966, 

Cholame 8W
6.1 6.81 7.75 0.17 0.21 

LA14 
North Palm Springs, 

1986
6 5.08 3.71 0.13 0.21 

LA15 Whittier, 1987 6 7.54 4.70 0.70 0.28 
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As mentioned before, the simplest way to obtain the mass 
matrix of a structure is by concentrating the mass at the 
translational DOFs. With this procedure, the mass matrix at an 
element (MLE) level is obtained and is given by (2). The 
consistent mass matrix for an element (MCE) is expressed by (3). 
The symbols ML and MC will be used in the subsequent 
discussions to denote the lumped and consistent mass matrices 
at a global structural level.  
 

𝑀

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

   (2) 

 

𝑀

⎣
⎢
⎢
⎢
⎢
⎡

140 0 0
0 156 22𝑙
0 22𝑙 4𝑙

70 0 0
0 54 3𝑙
0 13𝑙 3𝑙

     70 0 0
      0 54 13𝑙
      0 13𝑙 3𝑙

140 0 0
0 156 22𝑙
0 22𝑙 4𝑙 ⎦

⎥
⎥
⎥
⎥
⎤

  (3) 

                                                      
In (2) and (3), m and l are the uniformly distributed mass and 
the length of the element, respectively.  

Since the consistent mass matrix takes into account the 
rotational inertial effects [38], [42], [43], it results in a better 
representation of the mass distribution through the structure 
than the concentrated one. 

The Rayleigh Damping Model is represented by (4), where 
the α and β parameters are proportionality constants that are 
calculated by defining modal damping ratios at two modes 
(𝜁  and 𝜁 ). Several alternatives associated to Rayleigh 
Damping, obtained from different combinations of M and K in 
(4), have been studied [19], [30], [32], [34]. 

 
𝐶 𝛼𝑀 𝛽𝐾    (4) 

 
Excepting what is presented in Section IV of the paper 

(Objective 2), the tangent stiffness matrix (Kt) is used in (4). It 
seems to be more reasonable than using the elastic stiffness 
matrix (Ko) since if Ko is used, damping will not change as the 
structure reduces its stiffness while experimenting inelastic 
behavior, resulting in an increment of the fractions of critical 
damping [44]. This aspect is explained further in Section IV. 
The use of Kt in the matrix C has been criticized in the sense 
that when the structure deforms in the inelastic range, a 
reduction of damping is not expected since additional damping 
will occur due to the inelastic behavior. However, although 
extra damping is expected, it is taken into account in the 
hysteretic behavior of the members. 

III. CONCENTRATED VS. CONSISTENT MASS MATRIX 

A. Global Parameters 

The seismic demands in terms of inter-story shears and inter-

story displacements (drifts) are calculated by assuming first that 
the mass matrix is lumped (ML) and then consistent (MC). 
Before starting the discussion, it is important to say that some 
differences are observed between the lateral periods of 
vibration of the models with ML and MC. For the 3-story 
building, the first two periods of the model with MC are 
essentially the same as those of the model with ML. However, 
the period of the third mode is 28% greater for the model with 
MC. For the case of the 9-story model, the periods of the first 
five modes are quite similar for ML and MC, but they are greater 
for MC for modes 6 to 9, with the differences ranging from 5% 
to 16%. In the same manner, for the 20-story model, the periods 
are quite similar for modes 1 through 11 for the two types of 
matrices; however, for modes 12 to 20 they are greater for MC 
with the differences ranging from 7% to 17%. 

1. Inter-Story Shears 

The RV1 parameter, defined by (5), is used to compare the 
inter-story shear demands. In such an equation, VML and VMC 
represent the inter-story shears for the models with the ML and 
MC matrices, respectively. Since the consistent mass matrix 
represents better the rotational inertial effects a value of RV1 
larger than unity will indicate that the inter-story shears are 
overestimated if the concentrated mass is assumed. 

 

𝑅                                              (5) 

 
The mean values of RV1, averaged over all the strong motions, 

are presented in Fig. 4. Since the results are quite similar for the 
two horizontal directions, only the results for the NS direction 
are shown. The results can be seen in Fig. 4. It is observed that 
for the 3-story model (Fig. 4 (a)), on average, the inter-story 
shears are slightly underestimated if the concentrated mass 
model is used. The maximum underestimation is about 4%, 
which occurs for the upper story. The results are essentially the 
same for all seismic intensities.  

The maximum average underestimations are observed to be 
12% and 14%, for the 9- and 20-story models, respectively. It 
is worth to mention that underestimations larger than 28% occur 
for some individual strong motions for Models 1 and 2 (not 
presented). The graphs in Fig. 4 also indicate that for a given 
model, the magnitude of the underestimation tends to increase 
through the building height. One of the reasons for this is that 
higher-mode contribution in terms of inter-story shears for the 
upper stories is more significant when the MC matrix is used in 
the seismic analyses. The level of underestimation is observed 
to increase as the height of the building increases. Inter-story 
displacements were also compared, but the graphs are not 
presented. It is worth to mention, however, that the 
underestimation is smaller than that of inter-story shears; the 
maximum values of average and individual underestimations 
are observed to be 4% and 9%, respectively.  

 
 

World Academy of Science, Engineering and Technology
International Journal of Civil and Environmental Engineering

 Vol:16, No:11, 2022 

300International Scholarly and Scientific Research & Innovation 16(11) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

11
, 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

78
0.

pd
f



 
 

 

 

Fig. 4 Mean values of RV1, NS direction; (a) 3-story model, (b) 9-story model, and (c) 20-story model 
 

B. Local Individual Response Parameters 

1. Axial Loads 

The axial loads on columns of the models with the ML and 
MC matrices are now compared. The comparison is made for all 
columns: from the interior up to the exterior and from the base 
up to the top of the models. The comparison is made through 
the RA1 parameter expressed by (6). In such an equation, AML 
and AMC represent the axial loads on columns of the frames with 
the lumped and consistent mass matrices, respectively.  

 

𝑅                                              (6) 

 
The mean values of RA1 for exterior columns associated to the 

NS direction are presented in Figs. 5 (a)-(c), for the 3-, 9- and 
20-story frames, respectively. It can be observed that, unlike 
inter-story shears and displacements, the axial loads may be 
considerably overestimated if the concentrated mass matrix is 
used. Average overestimation of up to 60% can be observed. 
Even if the structure remains elastic (Saavg = 0.2 g), average 
overestimations of about 30% are observed. The magnitude of 
the maximum overestimations clearly tends to decrease as the 
height of the building increases; the values are 21% and 5% for 
Models 2 and 3, respectively. Although they are not shown, 

overestimations larger than 90% occurred for some individual 
strong motions, particularly for the 3-story model. 

The mean values of RA1 for interior columns were also 
calculated, but the results are not presented. It is important, 
however, to mention that significant differences are observed 
between the results of interior and exterior columns. For the 3-
story frame for example, as for exterior columns, the interior 
axial loads are overestimated, the individual and average 
overestimations can be up to 44% and 30%, respectively. For 
the 9- and 20-story models, on the other hand, the interior axial 
loads are underestimated by up to about 8% and 18%, on 
average and individually, respectively.  

2. Bending Moments 

The bending moments at interior and exterior columns, as 
well as for exterior and interior beams, at all structural 
locations, are now compared. To this aim, the RB1 parameter 
given by (7) is used. BML and BMC in (7) have a similar meaning 
as AML and AMC in (6), but bending moments are now being 
compared. 

 

𝑅                                    (7)                   
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Fig. 5 Mean values of RA1 and RB1, exterior columns, NS direction: (a), (b) and (c) RA1, Models 1, 2 and 3; (d), (e) and (f) RB1, Models 1, 2 and 3 
 

The mean values of RB1 for exterior columns corresponding 
to the NS direction are presented in Figs. 5 (d)-(f), for the 3-, 9-
, and 20-story frames, respectively. Results indicate that, unlike 
the case of axial loads, the bending moments at exterior 
columns can be considerably underestimated if the lumped 
mass model is used. Such underestimation tends to increase 
through the height of the models and with the seismic intensity, 
but tends to decrease as the building becomes taller. The 
maximum levels of underestimation are about 36%, 31% and 
20%, for the 3-, 9-, and 20-story models, respectively. The 
corresponding maximum underestimations for individual 
strong motions are about 68%, 59% and 41%. The level of 

underestimation in bending moments for interior columns was 
also calculated but are not presented. However, it is much 
smaller than that of exterior columns; the maximum individual 
and average underestimations are about 20% and 10%, 
respectively, for both the 3- and 9-story buildings. For the 20-
story building, on the other hand, the bending moments are 
practically the same for the lumped or consistent mass matrix. 
The mean values of RB1 for exterior and exterior beams were 
also calculated, but the results are not given. It can be said, 
however, that bending moments at beams are accurately 
estimated when the lumped mass matrix is used.  

Commonly, structural members of steel buildings are 
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designed for resultant stresses with a final revision in 
displacements. The results of this study show that there is not 
introduced errors in terms of lateral displacements if the mass 
matrix is assumed to be concentrated type. However, for axial 
loads and bending moments, significant errors can be 
introduced. Therefore, it is strongly recommended to use the 
consistent mass matrix in the numerical modelling of the 
structural system under consideration.  

IV. INITIAL VS. TANGENT STIFFNESS MATRIX 

The tangent stiffness matrix (Kt) was used in the earlier 
section in (2) to calculate the Rayleigh damping matrix. The 
main reasons for this are: 
(a) If Ko is used instead of Kt, damping (elements Cij of the C 

matrix) will not change as the structure reduces its stiffness 
due to inelastic behavior.  

(b) The values of ζn in all the vibrating modes of the structure 
are approximately the same. The use of the Rayleigh 
damping model results in very large damping values in the 
higher modes. The reduction in damping due to the use of 
Kt with respect to Ko partially compensates for these very 
large damping values in the higher modes. 

(c) The dissipation of energy produced by thermal effects of 
repeated elastic straining of the material grains and from 
the friction among the boundaries of the grains mentioned 

in Section I, which is modeled by viscous damping, also 
occurs after yielding of the material. In this sense, it is more 
reasonable to use Kt than Ko in (2) since a reduction of the 
elements of the C matrix is expected due to the structural 
softening (reduction of stiffness) produced by inelastic 
behavior. 

Therefore, in the context of this investigation, it is assumed 
that the responses that result when using the matrix Kt in the 
seismic analysis are more accurate than those obtained when 
using the Ko matrix. In practice, however, it is common to use 
the initial stiffness matrix (Ko) to construct the Rayleigh 
damping matrix. In this section of the paper, the accuracy of this 
approach is evaluated by comparing the seismic responses 
obtained when using the tangent stiffness matrix (Kt) to those 
obtained when using Ko. Only the axial forces in columns are 
discussed since they are the only parameter that, on average, 
presented significant sensitivity to the modeling of the stiffness 
matrix. To make the comparison, the RA3 ratio given by (8) is 
used. In such an equation, AKo and AKt represent the axial loads 
on columns when the Ko and Kt matrices are used in the 
formation of the C matrix. 
 

𝑅                                             (8)

 

 

 

Fig. 6 Mean values of RA3, exterior columns, NS direction: (a) 3-story model, (b) 9-story model, (c) 20-story model 
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The mean values of the RA3 parameter for exterior columns of 
the NS direction are shown in Fig. 6. It can be seen that the axial 
loads can be slightly overestimated for the smallest values of 
the seismic intensities, if the Ko matrix is used in the damping 
matrix. For the largest seismic intensities, on the other hand, the 
axial loads are significantly underestimated; the maximum 
average underestimations are 16%, 40% and 18% for Models 1, 
2 and 3, respectively. The corresponding underestimations can 
be up to 31%, 80% and 41% for the case of individual strong 
motions.   

V. CONCLUSIONS 

Proper modeling of the mass and damping matrices 
represents a key step in estimating the responses of buildings. 
Software users concerning seismic analysis of buildings 
commonly use the concentrated mass (ML) matrix and the 
Rayleigh damping matrix (C). Similarly, often the initial 
stiffness matrix (KO) and the first two modes are used in the 
construction of the Rayleigh damping matrix. The evaluation of 
the accuracy of these practices constitutes the main objective of 
this research for the case of steel buildings. To this aim the 
nonlinear seismic responses of three steel MRF models, 
representing steel buildings of low-, mid- and high-rise are 
considered. The main conclusions of the study are: 
1. If the matrix ML is used, the seismic responses may be 

underestimated, overestimated or accurately estimated, 
depending mainly on the parameter considered. The inter-
story shears are underestimated by up to 31% while the 
inter-story displacements are accurately estimated. The 
axial loads and bending moments in columns are 
overestimated and underestimated by up to 95% and 65%, 
respectively, but the bending moments at beams are 
accurately estimated.  

2. It is observed that the axial loads in columns can be 
significantly underestimated if the initial stiffness matrix 
(Ko) is used to develop the C matrix. The maximum 
underestimation is observed to be up to 80% for exterior 
columns. 

3. The results of this study give rise to state that, in order to 
minimize the errors in the seismic response calculation, the 
consistent mass matrix should be used in the structural 
modelling of the structural system under consideration. 
Similarly, the tangent stiffness matrix should be used to 
calculate the coefficients of the Rayleigh damping matrix.  
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