**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**1318

# Search results for: Backward MPSD iterative matrix

##### 1318 The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices

**Authors:**
Zhuan-de Wang,
Hou-biao Li,
Zhong-xi Gao

**Abstract:**

In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.

**Keywords:**
Backward MPSD iterative matrix,
Jacobi iterative matrix,
eigenvalue,
p-cyclic matrix.

##### 1317 The Convergence Results between Backward USSOR and Jacobi Iterative Matrices

**Authors:**
Zuan-De Wang,
Hou-biao Li,
Zhong-xi Gao

**Abstract:**

In this paper, the backward Ussor iterative matrix is proposed. The relationship of convergence between the backward Ussor iterative matrix and Jacobi iterative matrix is obtained, which makes the results in the corresponding references be improved and refined.Moreover,numerical examples also illustrate the effectiveness of these conclusions.

**Keywords:**
Backward USSOR iterative matrix,
Jacobi iterative matrix,
convergence,
spectral radius

##### 1316 Iterative solutions to the linear matrix equation AXB + CXTD = E

**Authors:**
Yongxin Yuan,
Jiashang Jiang

**Abstract:**

**Keywords:**
matrix equation,
iterative algorithm,
parameter estimation,
minimum norm solution.

##### 1315 A New Preconditioned AOR Method for Z-matrices

**Authors:**
Guangbin Wang,
Ning Zhang,
Fuping Tan

**Abstract:**

In this paper, we present a preconditioned AOR-type iterative method for solving the linear systems Ax = b, where A is a Z-matrix. And give some comparison theorems to show that the rate of convergence of the preconditioned AOR-type iterative method is faster than the rate of convergence of the AOR-type iterative method.

**Keywords:**
Z-matrix,
AOR-type iterative method,
precondition,
comparison.

##### 1314 Some New Upper Bounds for the Spectral Radius of Iterative Matrices

**Authors:**
Guangbin Wang,
Xue Li,
Fuping Tan

**Abstract:**

**Keywords:**
doubly α diagonally dominant matrix,
eigenvalue,
iterative matrix,
spectral radius,
upper bound.

##### 1313 An Iterative Method for the Symmetric Arrowhead Solution of Matrix Equation

**Authors:**
Minghui Wang,
Luping Xu,
Juntao Zhang

**Abstract:**

**Keywords:**
Symmetric arrowhead matrix,
iterative method,
like-minimum norm,
minimum norm,
Algorithm LSQR.

##### 1312 Iterative Solutions to Some Linear Matrix Equations

**Authors:**
Jiashang Jiang,
Hao Liu,
Yongxin Yuan

**Abstract:**

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

**Keywords:**
Matrix equation,
iterative algorithm,
parameter estimation,
minimum norm solution.

##### 1311 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C

**Authors:**
A.Tajaddini

**Abstract:**

In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.

**Keywords:**
Bisymmetric matrices,
Paige’s algorithms,
Least
square.

##### 1310 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices

**Authors:**
Li Jiang,
Baoguang Tian

**Abstract:**

**Keywords:**
Z-matrix,
mixed-type splitting iterative method,
precondition,
comparison theorem,
linear system.

##### 1309 Semiconvergence of Alternating Iterative Methods for Singular Linear Systems

**Authors:**
Jing Wu

**Abstract:**

In this paper, we discuss semiconvergence of the alternating iterative methods for solving singular systems. The semiconvergence theories for the alternating methods are established when the coefficient matrix is a singular matrix. Furthermore, the corresponding comparison theorems are obtained.

**Keywords:**
Alternating iterative method,
Semiconvergence,
Singular
matrix.

##### 1308 An Iterative Method for the Least-squares Symmetric Solution of AXB+CYD=F and its Application

**Authors:**
Minghui Wang

**Abstract:**

Based on the classical algorithm LSQR for solving (unconstrained) LS problem, an iterative method is proposed for the least-squares like-minimum-norm symmetric solution of AXB+CYD=E. As the application of this algorithm, an iterative method for the least-squares like-minimum-norm biymmetric solution of AXB=E is also obtained. Numerical results are reported that show the efficiency of the proposed methods.

**Keywords:**
Matrix equation,
bisymmetric matrix,
least squares problem,
like-minimum norm,
iterative algorithm.

##### 1307 Parallel Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

**Authors:**
Khairil Iskandar Othman,
Zarina Bibi Ibrahim,
Mohamed Suleiman

**Abstract:**

**Keywords:**
Backward Differentiation Formula,
block,
ordinarydifferential equations.

##### 1306 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product

**Authors:**
Xingping Sheng

**Abstract:**

**Keywords:**
Generalized inverse A(2)
T,
S,
Restricted inner product,
Iterative method,
Orthogonal projection.

##### 1305 Iterative Methods for An Inverse Problem

**Authors:**
Minghui Wang,
Shanrui Hu

**Abstract:**

An inverse problem of doubly center matrices is discussed. By translating the constrained problem into unconstrained problem, two iterative methods are proposed. A numerical example illustrate our algorithms.

**Keywords:**
doubly center matrix,
electric network theory,
iterative methods,
least-square problem.

##### 1304 An Iterative Method for Quaternionic Linear Equations

**Authors:**
Bin Yu,
Minghui Wang,
Juntao Zhang

**Abstract:**

By the real representation of the quaternionic matrix, an iterative method for quaternionic linear equations Ax = b is proposed. Then the convergence conditions are obtained. At last, a numerical example is given to illustrate the efficiency of this method.

**Keywords:**
Quaternionic linear equations,
Real representation,
Iterative algorithm.

##### 1303 Approximating Fixed Points by a Two-Step Iterative Algorithm

**Authors:**
Safeer Hussain Khan

**Abstract:**

In this paper, we introduce a two-step iterative algorithm to prove a strong convergence result for approximating common fixed points of three contractive-like operators. Our algorithm basically generalizes an existing algorithm..Our iterative algorithm also contains two famous iterative algorithms: Mann iterative algorithm and Ishikawa iterative algorithm. Thus our result generalizes the corresponding results proved for the above three iterative algorithms to a class of more general operators. At the end, we remark that nothing prevents us to extend our result to the case of the iterative algorithm with error terms.

**Keywords:**
Contractive-like operator,
iterative algorithm,
fixed point,
strong convergence.

##### 1302 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

**Authors:**
H. D. Ibrahim,
H. C. Chinwenyi,
H. N. Ude

**Abstract:**

In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.

**Keywords:**
conjugate gradient,
linear equations,
symmetric and positive definite matrix,
Gauss-Seidel,
Jacobi,
algorithm

##### 1301 An eighth order Backward Differentiation Formula with Continuous Coefficients for Stiff Ordinary Differential Equations

**Authors:**
Olusheye Akinfenwa,
Samuel Jator,
Nianmin Yoa

**Abstract:**

**Keywords:**
Stiff IVPs,
System of ODEs,
Backward differentiationformulas,
Block methods,
Stability.

##### 1300 Parallel Multisplitting Methods for Singular Linear Systems

**Authors:**
Guangbin Wang,
Fuping Tan

**Abstract:**

In this paper, we discuss convergence of the extrapolated iterative methods for linear systems with the coefficient matrices are singular H-matrices. And we present the sufficient and necessary conditions for convergence of the extrapolated iterative methods. Moreover, we apply the results to the GMAOR methods. Finally, we give one numerical example.

**Keywords:**
Singular H-matrix,
linear systems,
extrapolated iterative method,
GMAOR method,
convergence.

##### 1299 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C

**Authors:**
Minghui Wang,
Luping Xu,
Juntao Zhang

**Abstract:**

*AXB=C*and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.

**Keywords:**
Iterative method,
symmetric arrowhead matrix,
conjugate gradient algorithm.

##### 1298 On the Positive Definite Solutions of Nonlinear Matrix Equation

**Authors:**
Tian Baoguang,
Liang Chunyan,
Chen Nan

**Abstract:**

In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δ_{i} are discussed. An algorithm that avoids matrix inversion with the case -1<-δ_{i}<0 is proposed.

**Keywords:**
Nonlinear matrix equation,
Positive definite solution,
The maximal-minimal solution,
Iterative method,
Free-inversion

##### 1297 A Note on the Convergence of the Generalized AOR Iterative Method for Linear Systems

**Authors:**
Zhong-xi Gao,
Hou-biao Li

**Abstract:**

Recently, some convergent results of the generalized AOR iterative (GAOR) method for solving linear systems with strictly diagonally dominant matrices are presented in [Darvishi, M.T., Hessari, P.: On convergence of the generalized AOR method for linear systems with diagonally dominant cofficient matrices. Appl. Math. Comput. 176, 128-133 (2006)] and [Tian, G.X., Huang, T.Z., Cui, S.Y.: Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant cofficient matrices. J. Comp. Appl. Math. 213, 240-247 (2008)]. In this paper, we give the convergence of the GAOR method for linear systems with strictly doubly diagonally dominant matrix, which improves these corresponding results.

**Keywords:**
Diagonally dominant matrix,
GAOR method,
Linear
system,
Convergence

##### 1296 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System

**Authors:**
Ahmed Bensenouci

**Abstract:**

**Keywords:**
Linear matrix inequality,
power system,
robust
iterative PID,
robust output feedback control

##### 1295 Backward Erosion Piping through Vertically Layered Sands

**Authors:**
K. Vandenboer,
L. Dolphen,
A. Bezuijen

**Abstract:**

**Keywords:**
Backward erosion piping,
embankments,
physical modelling,
sand.

##### 1294 New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation

**Authors:**
Tan K. B.,
Norhashidah Hj. M. Ali

**Abstract:**

In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.

**Keywords:**
Standard point Crank-Nicolson (CN),
Rotated point Crank-Nicolson (RCN),
Explicit Group (EG),
Explicit Decoupled Group (EDG).

##### 1293 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

**Authors:**
Fatemeh Panjeh Ali Beik

**Abstract:**

**Keywords:**
Matrix equations,
Iterative methods,
Block Krylovsubspace methods.

##### 1292 Fixed Points of Contractive-Like Operators by a Faster Iterative Process

**Authors:**
Safeer Hussain Khan

**Abstract:**

In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves andgeneralizes corresponding results in the literature in two ways: iterativeprocess is faster, operators are more general. At the end, we indicatethat the results can also be proved with the iterative process witherror terms.

**Keywords:**
Contractive-like operator,
iterative process,
fixed point,
strong convergence.

##### 1291 On the Central Limit Theorems for Forward and Backward Martingales

**Authors:**
Yilun Shang

**Abstract:**

**Keywords:**
central limit theorem,
martingale difference sequence,
backward martingale.

##### 1290 An Effective Approach for Distribution System Power Flow Solution

**Authors:**
A. Alsaadi,
B. Gholami

**Abstract:**

**Keywords:**
Distribution power flow,
distribution automation
system,
radial network,
unbalanced networks.

##### 1289 Direct Block Backward Differentiation Formulas for Solving Second Order Ordinary Differential Equations

**Authors:**
Zarina Bibi Ibrahim,
Mohamed Suleiman,
Khairil Iskandar Othman

**Abstract:**

**Keywords:**
Backward Differentiation Formula,
block,
secondorder.