Search results for: Recurrences relation and Generalization of the new class matrix polynomial set.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4902

Search results for: Recurrences relation and Generalization of the new class matrix polynomial set.

4902 On Generalized New Class of Matrix Polynomial Set

Authors: Ghazi S. Kahmmash

Abstract:

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
4901 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning

Authors: Azita Tajaddini, Ramleh Shamsi

Abstract:

In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.

Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
4900 Relation between Significance of Attribute Set and Single Attribute

Authors: Xiuqin Ma, Norrozila Binti Sulaiman, Hongwu Qin

Abstract:

In the research field of Rough Set, few papers concern the significance of attribute set. However, there is important relation between the significance of single attribute and that of attribute set, which should not be ignored. In this paper, we draw conclusions by case analysis that (1) the attribute set including single attributes with high significance is certainly significant, while, (2)the attribute set which consists of single attributes with low significance possibly has high significance. We validate the conclusions on discernibility matrix and the results demonstrate the contribution of our conclusions.

Keywords: relation, attribute set, single attribute, rough set, significance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
4899 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation

Authors: Seung-Won Jung, Hye-Soo Kim, Le Thanh Ha, Seung-Jin Baek, Sung-Jea Ko

Abstract:

In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.

Keywords: Deinterlacing, polynomial interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
4898 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns

Authors: Wajdi Mohamed Ratemi

Abstract:

The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.

Keywords: Generalized Pascal’s triangle, Pascal’s triangle, polynomial expansion, Sierpinski’s triangle, staircase horizontal vertical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
4897 A Deterministic Polynomial-time Algorithm for the Clique Problem and the Equality of P and NP Complexity Classes

Authors: Zohreh O. Akbari

Abstract:

In this paper a deterministic polynomial-time algorithm is presented for the Clique problem. The case is considered as the problem of omitting the minimum number of vertices from the input graph so that none of the zeroes on the graph-s adjacency matrix (except the main diagonal entries) would remain on the adjacency matrix of the resulting subgraph. The existence of a deterministic polynomial-time algorithm for the Clique problem, as an NP-complete problem will prove the equality of P and NP complexity classes.

Keywords: Clique problem, Deterministic Polynomial-time Algorithm, Equality of P and NP Complexity Classes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
4896 Dimensionality Reduction of PSSM Matrix and its Influence on Secondary Structure and Relative Solvent Accessibility Predictions

Authors: Rafał Adamczak

Abstract:

State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads to high dimensional feature spaces that may create problems with parameter optimization and generalization. Several recently published suggested that applying feature extraction for the PSSM matrix may result in improvements in secondary structure predictions. However, none of the top performing methods considered here utilizes dimensionality reduction to improve generalization. In the present study, we used simple and fast methods for features selection (t-statistics, information gain) that allow us to decrease the dimensionality of PSSM matrix by 75% and improve generalization in the case of secondary structure prediction compared to the Sable server.

Keywords: Secondary structure prediction, feature selection, position specific scoring matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
4895 Complexity Analysis of Some Known Graph Coloring Instances

Authors: Jeffrey L. Duffany

Abstract:

Graph coloring is an important problem in computer science and many algorithms are known for obtaining reasonably good solutions in polynomial time. One method of comparing different algorithms is to test them on a set of standard graphs where the optimal solution is already known. This investigation analyzes a set of 50 well known graph coloring instances according to a set of complexity measures. These instances come from a variety of sources some representing actual applications of graph coloring (register allocation) and others (mycieleski and leighton graphs) that are theoretically designed to be difficult to solve. The size of the graphs ranged from ranged from a low of 11 variables to a high of 864 variables. The method used to solve the coloring problem was the square of the adjacency (i.e., correlation) matrix. The results show that the most difficult graphs to solve were the leighton and the queen graphs. Complexity measures such as density, mobility, deviation from uniform color class size and number of block diagonal zeros are calculated for each graph. The results showed that the most difficult problems have low mobility (in the range of .2-.5) and relatively little deviation from uniform color class size.

Keywords: graph coloring, complexity, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
4894 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set

Authors: Andreas Theissler, Ian Dear

Abstract:

The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter  of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.

Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
4893 A Class of Formal Operators for Combinatorial Identities and its Application

Authors: Ruigang Zhang, Wuyungaowa, Xingchen Ma

Abstract:

In this paper, we present some formulas of symbolic operator summation, which involving Generalization well-know number sequences or polynomial sequences, and mean while we obtain some identities about the sequences by employing M-R‘s substitution rule.

Keywords: Generating functions, operators sequence group, Riordan arrays, R. G operator group, combinatorial identities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
4892 Novel Approach for Promoting the Generalization Ability of Neural Networks

Authors: Naiqin Feng, Fang Wang, Yuhui Qiu

Abstract:

A new approach to promote the generalization ability of neural networks is presented. It is based on the point of view of fuzzy theory. This approach is implemented through shrinking or magnifying the input vector, thereby reducing the difference between training set and testing set. It is called “shrinking-magnifying approach" (SMA). At the same time, a new algorithm; α-algorithm is presented to find out the appropriate shrinking-magnifying-factor (SMF) α and obtain better generalization ability of neural networks. Quite a few simulation experiments serve to study the effect of SMA and α-algorithm. The experiment results are discussed in detail, and the function principle of SMA is analyzed in theory. The results of experiments and analyses show that the new approach is not only simpler and easier, but also is very effective to many neural networks and many classification problems. In our experiments, the proportions promoting the generalization ability of neural networks have even reached 90%.

Keywords: Fuzzy theory, generalization, misclassification rate, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
4891 Discrete Polynomial Moments and Savitzky-Golay Smoothing

Authors: Paul O'Leary, Matthew Harker

Abstract:

This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.

Keywords: Gram polynomials, Savitzky-Golay Smoothing, Discrete Polynomial Moments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
4890 Sign Pattern Matrices that Admit P0 Matrices

Authors: Ling Zhang, Ting-Zhu Huang

Abstract:

A P0-matrix is a real square matrix all of whose principle minors are nonnegative. In this paper, we consider the class of P0-matrix. Our main aim is to determine which sign pattern matrices are admissible for this class of real matrices.

Keywords: Sign pattern matrices, P0 matrices, graph, digraph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
4889 Computational Aspects of Regression Analysis of Interval Data

Authors: Michal Cerny

Abstract:

We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input – interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input – interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example.

Keywords: Linear regression, interval-censored data, computational complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
4888 Ensembling Adaptively Constructed Polynomial Regression Models

Authors: Gints Jekabsons

Abstract:

The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.

Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
4887 Transformations between Bivariate Polynomial Bases

Authors: Dimitris Varsamis, Nicholas Karampetakis

Abstract:

It is well known, that any interpolating polynomial p (x, y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y, has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of this short note is twofold : a) to present transformations between the coordinates of the polynomial p (x, y) in the aforementioned basis and b) to present transformations between these bases.

Keywords: Bivariate interpolation polynomial, Polynomial basis, Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
4886 On CR-Structure and F-Structure Satisfying Polynomial Equation

Authors: Manisha Kankarej

Abstract:

The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.

Keywords: CR-submainfolds, CR-structure, Integrability condition & Nijenhuis tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
4885 Studies on Properties of Knowledge Dependency and Reduction Algorithm in Tolerance Rough Set Model

Authors: Chen Wu, Lijuan Wang

Abstract:

Relation between tolerance class and indispensable attribute and knowledge dependency in rough set model with tolerance relation is explored. After giving definitions and concepts of knowledge dependency and knowledge dependency degree for incomplete information system in tolerance rough set model by distinguishing decision attribute containing missing attribute value or not, the result of maintaining reflectivity, transitivity, augmentation, decomposition law and merge law for complete knowledge dependency is proved. Knowledge dependency degrees (not complete knowledge dependency degrees) only satisfy some laws after transitivity, augmentation and decomposition operations. An algorithm to solve attribute reduction in an incomplete decision table is designed. The correctness is checked by an example.

Keywords: Incomplete information system, rough set, tolerance relation, knowledge dependence, attribute reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
4884 Variable Rough Set Model and Its Knowledge Reduction for Incomplete and Fuzzy Decision Information Systems

Authors: Da-kuan Wei, Xian-zhong Zhou, Dong-jun Xin, Zhi-wei Chen

Abstract:

The information systems with incomplete attribute values and fuzzy decisions commonly exist in practical problems. On the base of the notion of variable precision rough set model for incomplete information system and the rough set model for incomplete and fuzzy decision information system, the variable rough set model for incomplete and fuzzy decision information system is constructed, which is the generalization of the variable precision rough set model for incomplete information system and that of rough set model for incomplete and fuzzy decision information system. The knowledge reduction and heuristic algorithm, built on the method and theory of precision reduction, are proposed.

Keywords: Rough set, Incomplete and fuzzy decision information system, Limited valued tolerance relation, Knowledge reduction, Variable rough set model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
4883 Factoring a Polynomial with Multiple-Roots

Authors: Feng Cheng Chang

Abstract:

A given polynomial, possibly with multiple roots, is factored into several lower-degree distinct-root polynomials with natural-order-integer powers. All the roots, including multiplicities, of the original polynomial may be obtained by solving these lowerdegree distinct-root polynomials, instead of the original high-degree multiple-root polynomial directly. The approach requires polynomial Greatest Common Divisor (GCD) computation. The very simple and effective process, “Monic polynomial subtractions" converted trickily from “Longhand polynomial divisions" of Euclidean algorithm is employed. It requires only simple elementary arithmetic operations without any advanced mathematics. Amazingly, the derived routine gives the expected results for the test polynomials of very high degree, such as p( x) =(x+1)1000.

Keywords: Polynomial roots, greatest common divisor, Longhand polynomial division, Euclidean GCD Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
4882 A New Weighted LDA Method in Comparison to Some Versions of LDA

Authors: Delaram Jarchi, Reza Boostani

Abstract:

Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.

Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
4881 Several Spectrally Non-Arbitrary Ray Patterns of Order 4

Authors: Ling Zhang, Feng Liu

Abstract:

A matrix is called a ray pattern matrix if its entries are either 0 or a ray in complex plane which originates from 0. A ray pattern A of order n is called spectrally arbitrary if the complex matrices in the ray pattern class of A give rise to all possible nth degree complex polynomial. Otherwise, it is said to be spectrally non-arbitrary ray pattern. We call that a spectrally arbitrary ray pattern A of order n is minimally spectrally arbitrary if any nonzero entry of A is replaced, then A is not spectrally arbitrary. In this paper, we find that is not spectrally arbitrary when n equals to 4 for any θ which is greater than or equal to 0 and less than or equal to n. In this article, we give several ray patterns A(θ) of order n that are not spectrally arbitrary for some θ which is greater than or equal to 0 and less than or equal to n. by using the nilpotent-Jacobi method. One example is given in our paper.

Keywords: Spectrally arbitrary, Nilpotent matrix, Ray patterns, sign patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
4880 A Contribution to the Polynomial Eigen Problem

Authors: Malika Yaici, Kamel Hariche, Tim Clarke

Abstract:

The relationship between eigenstructure (eigenvalues and eigenvectors) and latent structure (latent roots and latent vectors) is established. In control theory eigenstructure is associated with the state space description of a dynamic multi-variable system and a latent structure is associated with its matrix fraction description. Beginning with block controller and block observer state space forms and moving on to any general state space form, we develop the identities that relate eigenvectors and latent vectors in either direction. Numerical examples illustrate this result. A brief discussion of the potential of these identities in linear control system design follows. Additionally, we present a consequent result: a quick and easy method to solve the polynomial eigenvalue problem for regular matrix polynomials.

Keywords: Eigenvalues/Eigenvectors, Latent values/vectors, Matrix fraction description, State space description.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
4879 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.

Keywords: Fractional Fourier Transform, uncertainty principle, Fractional Fourier Span, amplitude, phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
4878 On Positive Definite Solutions of Quaternionic Matrix Equations

Authors: Minghui Wang

Abstract:

The real representation of the quaternionic matrix is definited and studied. The relations between the positive (semi)define quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi)definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.

Keywords: Matrix equation, Quaternionic matrix, Real representation, positive (semi)definite solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
4877 Blow up in Polynomial Differential Equations

Authors: Rudolf Csikja, Janos Toth

Abstract:

Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.

Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
4876 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
4875 Invariant Characters of Tolerance Class and Reduction under Homomorphism in IIS

Authors: Chen Wu, Lijuan Wang

Abstract:

Some invariant properties of incomplete information systems homomorphism are studied in this paper. Demand conditions of tolerance class, attribute reduction, indispensable attribute and dispensable attribute being invariant under homomorphism in incomplete information system are revealed and discussed. The existing condition of endohomomorphism on an incomplete information system is also explored. It establishes some theoretical foundations for further investigations on incomplete information systems in rough set theory, like in information systems.

Keywords: Attribute reduction, homomorphism, incomplete information system, rough set, tolerance relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
4874 Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices

Authors: Yongxin Yuan

Abstract:

Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., RH = R = R−1 = ±Im and SH = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize AX−Z2+Y HA−WH2, and, given an arbitrary A˜ ∈ Cm×n, we find a unique matrix among the minimizers of AX − Z2 + Y HA − WH2 in ρ that minimizes A − A˜. We also obtain sufficient and necessary conditions for existence of A ∈ ρ such that AX = Z, Y HA = WH, and characterize the set of all such matrices A if the conditions are satisfied. These results are applied to solve a class of left and right inverse eigenproblems for generalized reflexive (anti-reflexive) matrices.

Keywords: approximation, generalized reflexive matrix, generalized anti-reflexive matrix, inverse eigenvalue problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
4873 Designing FIR Filters with Polynomial Approach

Authors: Sunil Bhooshan, Vinay Kumar

Abstract:

This paper discusses a method for designing the Finite Impulse Response (FIR) filters based on polynomial approach.

Keywords: FIR filter, Polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960