Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: inverse technique

2 Characterization of Adhesive Layers in Sandwich Composites by Nondestructive Technique

Authors: E. Barkanov, E. Skukis, M. Wesolowski, A. Chate

Abstract:

New nondestructive technique, namely an inverse technique based on vibration tests, to characterize nonlinear mechanical properties of adhesive layers in sandwich composites is developed. An adhesive layer is described as a viscoelastic isotropic material with storage and loss moduli which are both frequency dependent values in wide frequency range. An optimization based on the planning of experiments and response surface technique to minimize the error functional is applied to decrease considerably the computational expenses. The developed identification technique has been tested on aluminum panels and successfully applied to characterize viscoelastic material properties of 3M damping polymer ISD-112 used as a core material in sandwich panels.

Keywords: Adhesive layer, finite element method, inverse technique, sandwich panel, vibration test, viscoelastic material properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
1 Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft

Authors: F. Caliskan

Abstract:

This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.

Keywords: Aircraft Icing, Stability Derivatives, Neural NetworkIdentification, Reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386