**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31821

##### Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method

**Authors:**
Saeed Sarabadan,
Kamal Rashedi

**Abstract:**

**Keywords:**
Inverse problem,
parabolic equations,
heat equation,
Ritz-Galerkin method,
Landweber iterations.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1125057

**References:**

[1] J. R. Cannon, The One-Dimensional Heat Equation, Cambridge University Press, 1984.

[2] J. C. Liu and T. Wei, Moving boundary identification for a two-dimensional inverse heat conduction problem, Inverse Prob. Sci. Eng. 9 (2011) 1134-1154.

[3] B. T. Johansson and D. Lesnic and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan problem, Appl. Math. Model. 35 (2011) 4367-4378.

[4] B. T. Johansson and D. Lesnic and T. Reeve, Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using a method of fundamental solutions, Invese Probl. Sci. Eng. 19 (2011) 659-677.

[5] B. T. Johansson and D. Lesnic and T. Reeve, A method of fundamental solutions for two-dimensional heat conduction, Int. J. Comput. Math. 88 (2011) 1697-1713.

[6] B. T. Johansson and D. Lesnic and T. Reeve, A comparative study on applying the method of fundamental solutions to the backward heat conduction problem, Math. Comput. Model. 54 (2011) 403-416.

[7] B. T. Johansson and D. Lesnic and T. Reeve, The method of fundamental solutions for the two-dimensional inverse Stefan problem, Inverse Probl. Sci. Eng. 22 (2014) 112-129.

[8] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, 2011.

[9] C. S. Liu, Solving two typical inverse Stefan problems by using the Lie-group shooting method, Int. J. Heat Mass Transfer 54 (2011) 1941-1949.

[10] J. Liu and B. Guerrier, A comparative study of domain embedding method for regularized solutions of inverse Stefan problems, Int. J. Numer. Meth. Engng. 40 (1997) 3579-3600.

[11] K. Rashedi and H. Adibi and M. Dehghan, Determination of space-time dependent heat source in a parabolic inverse problem via the Ritz-Galerkin technique, Inverse Probl. Sci. Eng. 22 (2014) 1077-1108.

[12] K. Rashedi and H. Adibi and M. Dehghan, Application of the Ritz-Galerkin method for recovering the spacewise-coefficients in the wave equation, Comput. Math. Appl. 65 (2013) 1990-2008.

[13] K. Rashedi and H. Adibi and J. Amani Rad and K. Parand, Application of the meshfree methods for solving the inverse one-dimensional Stefan problem, Eng. Anal. Bound. Elem. 40 (2014) 1-21.

[14] A. A. Samarskii and A. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2007.

[15] B. Wang and G. Zou and Q. Wang, Determination of unknown boundary condition in the two-dimensional inverse heat conduction problem, Intelligent comput ing theories and applications, Lecture Notes in Computer Science, 7390 (2012) 383-390.

[16] S. A. Yousefi and M. Dehghan and K. Rashedi, Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via Bernstein multi-scaling functions and cubic B-spline functions, Inverse Prob. Sci. Eng. 21 (2013) 500-523.