
Base Change for Fisher Metrics: Case of the
q−Gaussian Inverse Distribution

Gabriel I. Loaiza O., Carlos A. Cadavid M., Juan C. Arango P.

Abstract—It is known that the Riemannian manifold determined
by the family of inverse Gaussian distributions endowed with the
Fisher metric has negative constant curvature κ = − 1

2
, as does

the family of usual Gaussian distributions. In the present paper,
firstly we arrive at this result by following a different path, much
simpler than the previous ones. We first put the family in exponential
form, thus endowing the family with a new set of parameters, or
coordinates, θ1, θ2; then we determine the matrix of the Fisher
metric in terms of these parameters; and finally we compute this
matrix in the original parameters. Secondly, we define the Inverse
q−Gaussian distribution family (q < 3), as the family obtained by
replacing the usual exponential function by the Tsallis q−exponential
function in the expression for the Inverse Gaussian distribution,
and observe that it supports two possible geometries, the Fisher
and the q−Fisher geometry. And finally, we apply our strategy to
obtain results about the Fisher and q−Fisher geometry of the Inverse
q−Gaussian distribution family, similar to the ones obtained in the
case of the Inverse Gaussian distribution family.

Keywords—Base of Changes, Information Geometry, Inverse
Gaussian distribution, Inverse q-Gaussian distribution, Statistical
Manifolds.

I. INTRODUCTION

LET us consider a family of probability distributions of

parameters ξ = (ξ1, ξ2, . . . , ξn) with density function

p (x, ξ) and likelihood function �(p) = log(p) where x =
(x1, . . . , xn) are random variables. In terms of the original

parameters ξ1, . . . , ξn of the family, the Fisher metric is given

by

gFij =

∫
(∂i�(p)) (∂i�(p)) pdμX (1)

where μX is the measure defined on the space X where

x is defined. Many of the probability distribution families,

due to their relevance in the modeling of diverse phenomena,

can be put in the form of an exponential family. Putting a

family of probability distributions p(x, ξ) in the exponential

form p(x, ξ) = C(x) exp

[
n∑

i=1

θiFi(x)− ψ(θ)

]
, where xi are

random variables and θi are the parameters or coordinates

known as natural parameters. Turns out to make the study

of the family much easier. In particular, its Fisher metric

can be easily calculated as g̃Fij = ∂i∂jψ, where ∂k denotes

differentiation with respect to θk and the notation ∼ (tilde)

will be used to differentiate the metric when it comes from

the exponential family. The parameters ξ = (ξ1, . . . , ξn) and

θ = (θ1, . . . , θn) can be regarded as two parametrizations of

the same probability distribution family. The coefficients gFij
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and g̃Fij , of the Fisher metric relative to the coordinate systems

ξ1, . . . , ξn and θ1, . . . , θn, respectively, are related as

g̃Fkl =
n∑

i,j=1

gFij(θ)

(
∂ξi
∂θk

)(
∂ξj
∂θl

)
, (2a)

gFij =
n∑

k,l=1

g̃Fkl(ξ)

(
∂θk
∂ξi

)(
∂θl
∂ξj

)
. (2b)

which can be seen as a change of base. For more information

on this topic, see [2]. These relations can be expressed in

matrix form as g̃F = AgFAT or in its inverse form gF =

Bg̃FBT , where A =
[
∂ξi
∂θj

]
for i, j = 1, 2, . . . , n, and B =

A−1. According to this, if we know the components of the

metric g̃Fij , then it is possible to find the components of this

same metric in the coordinates ξ = (ξ1, ξ2, . . . , ξn) following

these steps

i) put the family of probability distributions in exponential

family form,

ii) express the parameters θi as functions of the parameters

ξj ,

iii) write the matrix g̃F as a function of the parameters ξ,

and

iv) compute the matrix product defined in equation (see

(2a)).

Based on the q index of Tsallis (see [12], [7]), many

mathematical and physical concepts have been developed

which have allowed for the description of complex physical

systems. The q-exponential function defined in (13) has served

as a basis for the generalization of the exponential models (see

[1]), which are families of density functions of the following

form

pq(x, ξ) = C(x) expq

[
n∑

i=1

θiFi(x)− ψ(θ)

]
. (3)

Amari and Ohara (see [1]) defined the q-Fisher metric by

means of the Bregman divergence, however, it is possible to

define it by means of the equality

g
(q)
ij = Ep̂

[
(∂i�q)(∂j�q) pq−1

]
, (4)

where p̂ is known as the q-relative distribution and is defined

in (15) and �q = logq (pq). This metric fulfills the properties

summarized in the theorem 2, particularly the literal (16c),

by means of which a relationship is established between the

q-Fisher metric and the Fisher metric. Fig. 1 is intended to

clarify how we can go from one representation of the metric

to another, according to whether it is expressed in the original

parameters or in the natural parameters.
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ij

��
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��
gF
ij=

hq
q gF

ij

��

g̃(q)��
g(q)=Cg̃(q)CT

��

Fig. 1 Base change for Fisher metric

According to this Tsallis index q, it is possible to generalize

families of distributions, for example, the probability density

of a family of q-Gaussian distributions of parameters ξ =
(μ, σ) has the form

pq(x, ξ) =
1

Zq,ξ
expq

(
− (x− μ)2

(3− q)σ2

)
(5)

where Zq,ξ is the normalization constant (see (19)) and

1 < q < 3. If q → 1 the probability density of the

Gaussian family of distributions is recovered, which we will

call usual. In [8], [11] and [3] there is a description of the

Riemannian manifold associated to this family. In particular

it is shown that its curvature is constant and negative has

the form κ = − q
3−q < 0. In [3], following the steps

i)-iv) described above, a coordinatization of this Riemannian

manifold is obtained putting the q-Fisher metrics in diagonal

form. Whereas, for the case of bivariate Gaussian distributions,

which depends on five parameters, two means, two variances

and the covariance, the representation is diagonal by blocks

(see [5]). This allowed us to conclude that geodesic curves

are ellipses centered at the μ axis. In the works that

we have been carrying out on the Gaussian distributions,

q-Gaussian, Gaussian inverse and q-Gaussian inverse, all

with two parameters, we have found that in the original

parameters, the Fisher information metric has a representation

diagonal. This powerful result facilitates the calculation of the

Christoffel symbols in the manifold induced by these families

of distributions, as well as the solution of the Euler-Lagrange

system that describes the geodesic curves of said system. In

our research work in Machine Learning, describing distances is

important to optimize the use of kernels or similarity measures

in algorithms such as Support Vector Machine (SVM).

Zhang (see [14]) studies the Riemannian manifold

determined by the n-th power of the inverse Gaussian

distribution and he proves that its curvature is constant and

it is given by κ = − 1
2 . This led us to the fact that the

Fisher metric for the family of inverse Gaussian distributions

(n = 1), can be put in diagonal form relative to an appropriate

coordinatization. It also allowed us to propose a generalization

of this family of distributions based on the q index (see (20))

in a different way from that proposed by Zhang. We also give

a description of the geometry associated with this information

manifold.

II. INFORMATION GEOMETRY

Let us consider a manifold M , x = (x1, x2, . . . , xn) an

element in it, θ a vector of parameters in an open R
n. The

set S of the probability distributions of the random variable x
with respect to the parameter θ is called the exponential model

or exponential family if the probability distribution p(x, θ) is

written as

S =

{
p(x, θ) ≥ 0 : p = C(x) exp

[
n∑

i=1

θiFi(x)− ψ(θ)

]}
(6)

where C(x) and every Fi(x) for i = 1, 2, . . . , n are random

variables in M and ψ is called the potential function, while

{θi} is the coordinate system called natural parameters. For

this family of distributions Fisher metric is defined as in

(1). The manifold M together with the Fisher metric is a

Riemannian manifold. For exponential families, Fisher metric

depends on the partial derivatives of the second order of the

potential function (Hessian manifold) and is given by

g̃Fij = ∂i∂jψ . (7)

The potential function for the exponential families also

allows us to obtain the cubic form CF
ijk = E [(∂i�)(∂j�)(∂k�)]

that is related to α ∈ R with the α-embeddings and therefore

with the Christoffel symbols through

Γ
(α)
ij,k =E

[(
∂i∂j�+

1− α

2
(∂i�)(∂j�)

)
∂k�

]

=E [(∂i∂j�) ∂k�] +
1− α

2
CF

ijk .

Christoffel symbols induce the affine α-connection

g
(
∇(α)

∂i
∂j , ∂k

)
= Γ

(α)
ij,k where g is a metric defined in

M , not necessarily Fisher metric. The triplet (M, g,∇)
is a statistical manifold. When α = 1 it is said that the

connection is exponential, when α = −1 the connection is

mixed and if α = 0 then ∇(0) is the connection Levi-Civita

for Fisher metric. In terms of the components of metric

g, Christoffel symbols and the Levi-Civita connection are

Γij,k = 1
2

n∑
l=1

(∂igjl + ∂jgil − ∂lgij) g
lk, where g−1 =

[
gij

]
is the inverse of the metric g = [gij ].

Let g be a metric defined in M ; X , Y and Z vector fields

such that Xg(Y, Z) = g (∇XY, Z) + g (Y,∇∗
XZ) then it is

said that the connections ∇ and ∇∗ are dual with respect to

the g metric. The connection ∇ is flat if and only if ∇∗ is

flat; in such a case it is said that (M, g,∇,∇∗) is a dually

flat space (see [1], chapter 3). If ∇ is a flat connection, there

is a corresponding coordinate system {θi} in M and for ∇∗

there is another coordinate system {ηi} for which the equality

g
(

∂
∂ηi

, ∂
∂θj

)
= δij is fulfilled, it is said that {ηi} is the dual

coordinate system of {θi} with respect to the g metric.

Theorem 1. Let (M, g,∇,∇∗) be a dually flat statistical
manifold. If {θi} is a coordinate system and {ηi} is the dual
coordinate system of {θi} then, there are functions ψ and φ
such that ∂ψ

∂θi
= ηi

∂ϕ
∂ηi

= θi, which satisfy the Legendre

Transformation ψ(p)+ϕ(p)−
n∑

i=1

θi(p)ηi(p) = 0. Additionally
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gij =
∂2ψ

∂θi∂θj
and gij = ∂2ϕ

∂ηi∂ηj
being g−1 =

[
gij

]
the inverse

of g.

III. INVERSE GAUSSIAN DISTRIBUTION

A random variable X has an inverse Gaussian distribution

with parameters ξ = (μ, λ) both positive, if the probability

density function is

p(x; ξ) =

√
λ

2πx3
exp

(
− λ

2μ2x
(x− μ)2

)
(8)

where x > 0. To demonstrate that the function given in (8)

is a density, we can use of the modified Bessel function or

with the transformation presented in [13]. The distribution has

been used in the description of some aspects of the Brownian

movement, finance, time series, etc. (see [4]). In Fig. 2 we can

study the behavior of inverse Gaussian distribution, when any

of its two parameters are fixed. In the upper part of Fig. 2,

we take μ = 1 and the shape parameter λ is varied according

to the value specified in each color, we can notice that the

maximum moves to the right as λ increases. In the lower part

of this graph, we take λ = 1 and vary μ (see value by color),

which means that the maximum does not move but decreases

in value. Each density has its maximum value if x assumes

the value μ
2λ

(√
9μ2 + 4λ2 − 3μ

)
. If X is a random variable

with such a distribution, the expected value and the variance

are given by E[X] = μ and V ar[X] = μ3

λ .

Fig. 2 Inverse Gaussian distributions for μ = 1 (up) and λ = 1 (down)

We can rewrite the probability density function to have

p(x, ξ) = x−3/2 exp

[
− λ

2μ2x
(x− μ)

2
+ ln

√
λ

2π

]
,

= x−3/2 exp

[
− λ

2μ2
x− λ

2
x−1 −

(
1

2
ln(2π)− 1

2
lnλ− λ

μ

)]
.

According to this last expression, the inverse Gaussian

family distribution, is an element of the exponential family

with natural parameters θ = (θ1, θ2) and potential function

given by

θ1 =
λ

2μ2
, θ2 =

λ

2
, and ψ(θ) =

1

2
ln

(
π

θ2

)
−2

√
θ1θ2 . (9)

Fig. 3 Potential function for the components θ1 and θ2

In the components θ1 and θ2, the potential function is

convex (see Fig. 3). If we calculate the second order derivatives

of the potential function ψ with respect to the components θ1
and θ2; we obtain the Fisher metric g̃F (see (7))

g̃F =

⎡
⎣ 1

2θ1

√
θ2
θ1

− 1
2
√
θ1θ2

− 1
2
√
θ1θ2

1
2θ2

2
+ 1

2θ2

√
θ1
θ2

⎤
⎦ . (10)

In order to obtain Fisher metric gF with diagonal

representation; the components θ1 and θ2, given in (9), are

derived in function of the original components ξ = (μ, λ)
and the matrix (10) is rewritten in this coordinate system ξ,

according to (2b) results

gF =

[
− λ

μ3 0
1

2μ2
1
2

][
μ3

λ −μ
λ−μ

λ
2
λ2 + 1

λμ

] [ − λ
μ3

1
2μ2

0 1
2

]
,

(11)

=

[
λ
μ3 0

0 1
2λ2

]
.

Christoffel symbols associated with Fisher metric gF

defined in (11) are given by: Γ11,1 = − 3
2μ , Γ11,2 = −λ2

μ3 ,

Γ12,1 = Γ21,1 = 1
2λ , Γ22,2 = − 1

λ and zeros for others. Since

the components R1
212 and R2

212 of the metric tensor are − 1
4λ2

and zero, then these results lead to that the curvature of this

information manifold is

κ =
gF11R

1
212 + gF12R

2
212

det(gF )
= −1

2
. (12)

This curvature coincides with that of the statistical manifold

induced by the Gaussian family distributions with components

μ ∈ R and σ ∈ R
+.
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IV. q-EXPONENTIAL FAMILY

For the Tsallis entropy index q, the functions q-exponential

and q-logarithm are defined, inverses one of the other, through

the expressions

expq(x) = [1 + (1− q)x]
1

1−q , (13)

logq(x) =
1

1− q

[
x1−q − 1

]
. (14)

where q < 3. Definitions, properties and some generalizations

raised by this pair of functions can be found in [12] (Chapter

3), [7] and [9] (Chapter 7). Let us highlight the fact that
d
dx expq(x) =

expq(x)

1+(1−q)x and d
dx logq(x) = 1

xq . Fig. 4 shows

how the q-exponential and q-logarithm functions tend to the

usual exponential and logarithm functions as q → 1.

Fig. 4 q-exponential (up) and q-logarithm (down) for some value of q

From the definition of the function q-exponential, Amari

(see [1]) generalizes the definition of exponential family given

in (6) as

S =

{
p(x, θ) ≥ 0 : p = C(x) expq

[
n∑

i=1

θiFi(x)− ψq(θ)

]}

where x are random variables and θ natural parameters (see

also [10]). The function ψq is called q-potential while the

likelihood function is given by �q = logq p(x, θ). For the q
index, the functional hq(θ) is defined as hq(θ) = E [p(x, θ)q],
from which they are defined: q-relative distribution,

p̂q(x, θ) =
1

hq(θ)
p(x, θ)q , (15)

and the expected value Ep̂[f ] = Ep̂ [f(x)] relative to p̂q . The

q-Fisher metric can be seen as g
(q)
ij = Ep̂

[
(∂i�q)(∂j�q) pq−1

]
(see [11] and [3]) for q < 3. In Theorem 2 some results

are presented for the q-Fisher metric. The last expression in

(16c) implies that the q-Fisher metric is conformal with Fisher

metric (see [1]).

Theorem 2. Let p(x, ξ) be a probability distribution belonging
to the q-exponential family. The q-Fisher metric is equivalent
to

g
(q)
ij =− Ep̂ [∂j(∂i�q)] , (16a)

g
(q)
ij = ∂i∂jψq , (16b)

g
(q)
ij =

q

hq
gFij where gFij is Fisher metric . (16c)

where p̂ was defined in (15).

Example 1. A variable X has a q-Gaussian distribution with
mean μ ∈ R and variance σ ∈ R

+ and its probability density
has the form given in (5) where 1 < q < 3, ξ = (μ, σ) is the
set of parameters and Zq,σ is the normalization constant that
results from solving the integral

Zq,ξ =

∫ ∞

−∞
expq

(
− (x− μ)2

(3− q)σ2

)
dx (17)

=2σ
√

3− q

∫ ∞

0

expq(−t2)dt , (18)

constant that depends on the index q and the parameter σ and
that is given by

Zq,σ = Aqσ =

⎧⎪⎪⎨
⎪⎪⎩

[√
3−q
1−qB

(
2−q
1−q ,

1
2

)]
σ If q < 1√

2πσ If q = 1[√
3−q
q−1B

(
3−q

2(q−1) ,
1
2

)]
σ If 1 < q < 3

.

(19)

The functional hq(p) for a variable with q-Gaussian
distribution has the form hq(p) =

3−q
2 Z1−q

q,σ (see [11]). This
distribution is an element of the family q-exponential and it
induces a Riemannian manifold with curvature κ = − q

3−q . In
[3] you get to the diagonal metric gF with the base change
(2b), which allows some of Christoffel symbols to be null and
leads to show that the geodesic curves in the manifold induced
by this distribution are ellipse arcs centered on the axis μ.
Other properties of this family of q-Gaussian distributions can
be found in [6].

V. INVERSE q-GAUSSIAN DISTRIBUTION

According to Tsallis’ theory with entropy index q, it is

natural to propose as a generalization of the inverse Gaussian

distribution, the distribution

p(x, ξ) =
x−3/2

Zq,ξ
expq

(
− λ

(3− q)μ2x
(x− μ)2

)
(20)

which we will call the inverse q-Gaussian distribution, where

ξ = (μ, λ) are positive parameters, x ∈ R
+ and Zq,ξ

is the normalization constant. In Fig. 5 this distribution is

represented for values of q, less than 1 (up) and for 1 < q < 3
(down). In this figure, horizontally the realizations x of the

random variable are represented and vertically the value of

the distribution for the set of parameters ξ = (μ, λ).
To find the normalization constant, this integral is solved

through the procedure described by Wani (see [13]) as follows

Zq,ξ =

∫ ∞

0
x−3/2 expq

(
− λ

(3− q)μ2
x+

2λ

(3− q)μ
− λ

(3− q)
x−1

)
dx.

(21)
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Fig. 5 Graph of inverse q-Gaussian distribution for σ = 1 and μ = 1, when
q < 1 (up) and 1 < q < 3 (down)

To obtain the solution, first we are going to do the

substitutions a2 = λ
(3−q)μ2 , b2 = λ

3−q and x = T 2 which

brings us to the expressions ab = λ
(3−q)μ and a

b = 1
μ . The

integral (21) can be written as

Zq,ξ = 2

∫ ∞

0

T−2 expq

(
−

(
a2T 2 +

b2

T 2

)
+ 2ab

)
dT .

(22)

We make a new substitution Q =
(

aT 2−b
T

)2

from which

equality can be reached −Q = −
(
a2T 2 + b2

T 2

)
+ 2ab. We

also have the equation a2T 4− (2ab+Q)T 2+ b2 = 0 with the

two solutions presented below and for which the term dT
T 2 .

T =

√
Q+ 4ab+

√
Q

2a
,

dT

T 2
=

√
Q+ 4ab−√

Q

4b
√
Q(Q+ 4ab)

dQ ,

T =

√
Q+ 4ab−√

Q

2a
,

dT

T 2
= −

√
Q+ 4ab+

√
Q

4b
√

Q(Q+ 4ab)
dQ ,

The first result occurs for T ≥
√

b
a and T <

√
b
a for the

second. By substituting these results in the integral (22) we

have the equality

Zq,ξ = 2

∫ 0

∞
expq(−Q)

[
−
√
Q+ 4ab+

√
Q

4b
√
Q(Q+ 4ab)

]
dQ+

2

∫ ∞

0

expq(−Q)

[√
Q+ 4ab−√

Q

4b
√
Q(Q+ 4ab)

]
dQ ,

=
1

b

∫ ∞

0

Q−1/2 expq(−Q)dQ .

Making substitution Q = t2 and since b =
√

λ
3−q then

equals Zq,ξ = 1√
λ

[
2
√
3− q

∫∞
0

expq(−t2)dt
]
. Expressions

(17) and (19) characterize the normalization constant for the

family of q-Gaussian distributions, then it can be concluded

that

Zq,λ =
Aq√
λ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[√
3−q
1−qB

(
2−q
1−q ,

1
2

)]
1√
λ

If q < 1√
2π
λ If q = 1[√
3−q
q−1B

(
3−q

2(q−1) ,
1
2

)]
1√
λ

If 1 < q < 3

,

(23)

where Aq is the constant given in (19) for the q-Gaussian

distribution. In Fig. 6, where λ = 2, we can determine that

the function Zp,λ is increasing and continuous. In addition

lim
q→1−

Zq,λ and lim
q→1+

Zq,λ converge to
√

2π
λ .

Fig. 6 Function Zq,λ for λ = 2 referred to the inverse q-Gaussian

Let us see now that the this distribution is an element of
the q-exponential family. For this we apply the definition of
the q-exponential function given in (13) in the definition of
probability density of the inverse q-Gaussian distribution (see
20), so

p(x, ξ) =
x−3/2

Zq,λ

[(
− λ

(3− q)μ2x
(x− μ)2

)
(1− q) + 1

] 1
1−q

,

=

[(
− λZ

q−1
q,λ

(3−q)μ2x
(x− μ)2

)
(1− q) +

[
Z

q−1
q,λ

−1

1−q

]
(1− q) + 1

] 1
1−q

x3/2
.

According to the definition of the functions q-logarithm
and q-exponential, as well as some algebraic properties, it is
concluded that:

p(x, ξ) = x−3/2·

expq

[
−
Zq−1
q,λ

3− q

λ

μ2
x−

Zq−1
q,λ

3− q
λx−1 −

(
− logq

(
1

Zq,λ

)
−

Zq−1
q,λ

3− q

2λ

μ

)]
,

which allows to determine that the family of inverse

q-Gaussian distributions is an element of the family

q-exponential. Therefore the natural parameters θ = (θ1, θ2)
are

θ1 =
Zq−1
q,λ

3− q

λ

μ2
and θ2 =

Zq−1
q,λ

3− q
λ . (24)

With these components θ1 and θ2, we can conclude that
Zq−1

q,λ

3−q
2λ
μ = 2

√
θ1θ2 and also 1

Zq,λ
= (dqθ2)

1
3−q where

dq = 3−q
A2

q
. With these equalities, the q-potential function in

the components θ1, θ2 is given by

ψq(θ1, θ2) = − logq (dqθ2)
1

3−q − 2
√
θ1θ2 . (25)

We can obtain the partial derivative of the potential function

on each of the components θ1 and θ2, where ∂1ψq = −
√

θ2
θ1
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and ∂2ψq = −
√

θ1
θ2

− d
1−q
3−q
q

(3−q)θ
2

3−q
2

. And from these results

the derivatives of order two are obtained on these same

components ∂1(∂1ψq) = 1
2θ1

√
θ2
θ1

, ∂1(∂2ψq) = ∂2(∂1ψq) =

− 1
2
√
θ1θ2

y ∂2(∂2ψq) = 1
2θ2

√
θ1
θ2

+
2Zq−1

q,λ

(3−q)2θ2
2

since 1
Zq,λ

=

(dqθ2)
1

3−q . With partial derivatives of the q-potential function,

q-Fisher metric whose representation is not diagonal is

g̃(q) =

⎡
⎣ 1

2θ1

√
θ2
θ1

− 1
2
√
θ1θ2

− 1
2
√
θ1θ2

1
2θ2

√
θ1
θ2

+
2Zq−1

q,λ

(3−q)2θ2
2

⎤
⎦ . (26)

To obtain the q-Fisher metric with diagonal representation,

the components of the natural parameters θ = (θ1, θ2) are

derived in terms of the given parameters ξ = (μ, λ), it turns

out that

∂θ1
∂μ

=− 2Zq−1
q,λ

3− q

λ

μ3
,

∂θ2
∂μ

= 0 ,

∂θ1
∂λ

=
Zq−1
q,λ

3− q

1

μ2
,

∂θ2
∂λ

=
Zq−1
q,λ

3− q
.

The metric (26) is written in terms of the components μ
and λ.

g(q) =

[ −1 1
μ2

0 2
3−q

1
λ2

]⎡
⎣ − 2Zq−1

q,λ

3−q
λ
μ3

Zq−1
q,λ

3−q
1
μ2

0
Zq−1

q,λ

3−q

⎤
⎦ ,

=

⎡
⎣ 2Zq−1

q,λ

3−q
λ
μ3 0

0
2Zq−1

q,λ

(3−q)2
1
λ2

⎤
⎦ .

To obtain the Fisher metric, it is necessary to calculate the

functional hq(p) since, according to theorem 2, gF =
hq

q g(q).

This function can be written in the form hq(p) = f(q)Z1−q

where f(q) is a function such that f(q) → 1 as q → 1
and the functional hq exists if 1 ≤ q < 2. Accordingly, we

can write the matrix g(q) and find a diagonal representation

of the Fisher metric, in the original parameters ξ = (μ, λ),
in the statistical manifold generated by the family of inverse

q-Gaussian distributions.

g(q) =

[
2f(q)

(3−q)hq

λ
μ3 0

0 2f(q)
(3−q)2h(q)

1
λ2

]
, (27)

gF =

[
2f(q)
q(3−q)

λ
μ3 0

0 2f(q)
q(3−q)2

1
λ2

]
. (28)

For the metric gF obtained in (27), The partial derivatives

with respect to the components μ and λ, are given by

∂1g
F
11 =− 6f(q)

q(3− q)

λ

μ4
, ∂2g

F
11 =

2f(q)

q(3− q)

1

μ3
,

∂1g
F
22 =0, ∂2g

F
22 = − 4f(q)

q(3− q)2
1

λ3
.

Based on these results, Christoffel symbols are

Γ11,1 =− 3

2μ
Γ11,2 = − (3− q)

2

λ2

μ3
(29)

Γ22,2 =− 1

λ
Γ21,2 = Γ12,2 = Γ22,1 = 0

Γ21,1 =
1

2λ
= Γ12,1

If q → 1, these results coincide with the Christoffel symbols

obtained on the statistical manifold induced by the family of

inverse Gaussian distributions. Note that these symbols are

not dependent on function f(q). Since ∂2Γ12,1 = − 1
2λ2 and

∂2Γ12,2 = ∂1Γ22,1 = ∂1Γ22,2 = 0 then the components R1
212

and R2
212 of the metric tensor are − 1

4λ2 and zero respectively.

As det(gF ) = 4f2(q)
q2(3−q)3

1
λμ3 so

κ =
gF11R

1
121 + gF12R

2
121

det(gF )
= −q(3− q)2

8f(q)
(30)

If q → 1 then κ = − 1
2 , which corresponds to the curvature of

the manifold of information induced by the family of inverse

Gaussian distributions.
To obtain the function f(q) it is necessary to find an

expression for the functional hq(p). For this, the definition of
such a functional is applied as hq(p) =

∫
pq dx and we follow

a similar path to obtaining the normalization constant Zp,λ
for the family of inverse Gaussian distributions. Defining the
constants a2 = λ

(3−q)μ2 , b2 = λ
3−q and then the substitutions:

x = T 2 at first and then Q =
(
aT − b

T

)2
in a second moment,

leads us to the integral

hq(p) =
(2a)2−3q

Zq
q,λ

∫ ∞

0

(√
Q+ 4ab+

√
Q
)2−3q√

Q(Q+ 4ab)

[
expq(−Q)

]q
dQ

+
(2a)2−3q

Zq
q,λ

∫ ∞

0

(√
Q+ 4ab−√

Q
)2−3q√

Q(Q+ 4ab)

[
expq(−Q)

]q
dQ .

Let us take v = 2 − 3q and the replacement Q =
4ab sinh2(y), where dQ = 8ab sinh(y) cosh(y)dy. Making

use of some identities from the usual hyperbolic trigonometry,

this substitution will lead us to the integral

hq(p) =
4μv

Zq
q,λ

∫ ∞

0

cosh(vy)
[
expq

(−4ab sinh2(y)
)]q

dy ,

=
4μv

Zq
q,λ

∫ ∞

0

cosh(vy)

[
1− 4(1− q)

3− q

λ

μ
sinh2(y)

] q
1−q

dy .

This integral is convergent for 1 ≤ q < 2 and does not have

an analytical solution for every value of q.

VI. CONCLUSION

The methodology proposed by means of the base change

given in (2a) and (2b) allows us to obtain the Fisher metric

in an easier way, by means of partial derivatives; a process

that we exposed in [3] and the present work. On the other

hand, the Tsallis index has allowed us to generalize some

families as the inverse Gaussian as in (20), generalization

that we have not found in recent articles and for which we

are studying its applications in finance and the Brownian

movement. For the family of inverse distributions q-Gaussian,
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an analytical expression was obtained for the normalization

constant, which is given by Zq,λ =
Aq√
λ

where Aq is the same

constant that results for the normalization constant Zq,σ of

q-Gaussian distributions. We also find expressions for Fisher

and q-Fisher metrics. And with these we managed to account

for the Christoffel symbols and with them the curvature given

by κ = − q(3−q)2

8f(q) . If we take q → 1, we recover the elements

of the information geometry induced by the family of inverse

Gaussian distributions.
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