
 

 

 
Abstract—This study presents an inverse analysis for predicting 

the thermal conductivities and the heat flux of a high-temperature 
metallurgical reactor simultaneously. Once these thermal parameters 
are predicted, the time-varying thickness of the protective phase-
change bank that covers the inside surface of the brick walls of a 
metallurgical reactor can be calculated. The enthalpy method is used 
to solve the melting/solidification process of the protective bank. The 
inverse model rests on the Levenberg-Marquardt Method (LMM) 
combined with the Broyden method (BM). A statistical analysis for 
the thermal parameter estimation is carried out. The effect of the 
position of the temperature sensors, total number of measurements 
and measurement noise on the accuracy of inverse predictions is 
investigated. Recommendations are made concerning the location of 
temperature sensors. 

 
Keywords—Inverse heat transfer, phase change, metallurgical 

reactor, Levenberg–Marquardt method, Broyden method, bank 
thickness. 

I. INTRODUCTION 

IGH-temperature metallurgical reactor such aluminum-
electrolysis-cells (Fig. 1) are used for material processing 

that requires high powers and elevated temperature. Their 
applications are in the production of aluminum and the 
smelting of materials such as steel, copper and nickel calcine.  

A fascinating solid/liquid phase change phenomenon that 
arises in these metallurgical reactors is the formation of a bank 
that covers the inside surface of the refractory brick wall. The 
presence of this bank is extremely important. It protects the 
inner lining of the refractory brick wall from the highly 
corrosive slag. On the other hand, too thick a bank is 
detrimental to the industrial production as the volume 
available for smelting is reduced. Therefore, keeping a bank of 
optimal thickness is crucial for the safe and profitable 
operation of the metallurgical reactor.  

Due to the hostile conditions that prevail inside these 
reactors, it is however very difficult and risky to measure the 
bank thickness using probes submerged into the corrosive slag 
(The standard method). Additionally, the transient formation 
of the bank depends on the boundary conditions, the power 
input, and the thermos physical properties of the slag. 
Consequently, predicting the transient formation of the 
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protective bank inside high-temperature metallurgical reactor 
is a challenging problem. To address this problem, an inverse 
heat transfer procedure is proposed. The prediction of the bank 
formation with inverse heat transfer methods has been the 
subject of few investigations in the past. These methods rest 
on the conjugate gradient method [1]-[4], the Kalman filter 
method [5]-[9] and the LMM [10]. In all of these studies, the 
focus was on the inverse prediction of the time-varying heat 
flux at (x=LBrick + LPCM) using the transient temperature 
measurements, or heat flux measurements, taken at a specified 
location inside the refractory brick wall (Fig. 2). Once the heat 
flux had been predicted, the time-varying bank thickness E(t) 
was calculated using the direct model.  

The objective of the present study is to extend these 
previous studies by predicting simultaneously several 
unknown quantities of interest that is the time-varying heat 
flux q"(t), the thermal conductivity in liquid PCM, the thermal 
conductivity in solid PCM and the thermal conductivity of 
refractory brick wall (Fig. 4). 

II. PROBLEM STATEMENT AND MATHEMATICAL MODEL 

(DIRECT MODEL) 

The one-dimensional phase-change problem for a High-
temperature Metallurgical Reactor is depicted in Fig. 2. The 
inner lining of the brick wall (x=LBrick) is coated with a 
protective bank whose thickness is E(t). E(t) represents the 
position of the solidification front for the Phase Change 
Material (PCM). The outer surface of the brick wall (x=0) is 
cooled with an air stream. The outside temperature is T∞ and 
the convective heat transfer coefficient h∞.  

At (x= LBrick + LPCM), a time-varying heat flux q"(t) is 
imposed over the time interval 0, 400000	 . 

The proposed mathematical model rests on the following 
assumptions [1], [3], [4], [6], [7]:  
 The temperature gradients in the x direction are much 

larger than those in the other directions. As a result, a one-
dimensional analysis can be applied. 

 The heat transfer inside the liquid phase of the PCM is 
conduction dominated [11].  

 The thermal properties of the phase change material 
(PCM) are temperature independent.  

 The phase change problem is non-isothermal. The melting 
process is depicted by three zones: a solid phase, a mushy 
zone and a liquid phase. 

 The thermal contact resistance between the refractory 
brick wall and the PCM is neglected. 
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Fig. 1 Cross view of a typical high-temperature metallurgical reactor 
 

 

Fig. 2 Schematic of a one-dimensional phase-change problem for a 
high-temperature metallurgical reactor 

 
Based on these assumptions, the governing heat diffusion 

equation is expressed as: 
 

p

T T f
C k H

t x x t
           

 (1) 

where δH and f are the enthalpy and the liquid fraction, 
respectively. The enthalpy δH is defined as  
 

, ,( )p liquid p solidH C C T       (2)  
 

The liquid fraction f varies linearly between the solidus Tsol 
and the liquidus Tliq in the following manner: 
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At each time-step, the liquid fraction f is updated iteratively 
in the following manner [12]: 

 

  1 1 1
k

k k k kdF
f f T F f

dT
      

 
 (4) 

 
F-1 is the inverse function of F. The boundary conditions at the 
left and right sides of Fig. 2 are: 
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 (5) 

 
Equations (1)-(5) are solved numerically using a Finite-

Volume Method (FVM). The scheme adopted for the time 
discretization is implicit. The resulting set of algebraic 
equations is solved using the Tri-Diagonal-Matrix-Algorithm 
(TDMA) [13]. 

The mathematical model was first validated using the one-
dimensional test case for the solidification of the binary Al–
4.5% Cu alloy reported in [12], [14]. In this example, a 
Dirichlet boundary condition of T=573 (K) is assumed at the 
boundary x=LBrick (Fig. 2). The width of the PCM layer is set 
equal to LPCM=0,5 (m) and the initial temperature is fixed at 
Tin= 969 (K). 

Fig. 3 shows the predicted time-varying phase front are in 
excellent agreement with the source-based numerical method 
[12] and the semi-analytical heat balance integral method [14].  

Next, the direct model was implemented for the entire 
metallurgical reactor i.e. the refractory brick wall and the 
PCM (Fig. 2). The operating thermal conditions of the 
metallurgical reactor are similar to those reported in [6], [7]. 
The brick wall is set equal to LBrick=0,1(m) and the PCM layer 
(solid, mushy, and liquid) is set equal to LPCM=0,1(m) (Fig. 2). 
The surrounding temperature is set equal to T∞=300 (K) and 
the outside average heat transfer coefficient is fixed at h∞=15 
(W/m2 K).  

The time-varying heat flux q"(t) at (x=LBrick+LPCM) is given 
by 

 

2
0 1

max

3 .
( ) * sin

t
q t Q Q

t

 
    

 
 (6)  

 
It is also assumed that the PCM thermal conductivity in the 

solid and liquid phases is temperature independent. The 
thermo-physical properties of the metallurgical reactor (brick 
wall and PCM) are provided in Table I [6], [7]. 

 

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:10, No:6, 2016 

1043International Scholarly and Scientific Research & Innovation 10(6) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
0,

 N
o:

6,
 2

01
6 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
04

53
1.

pd
f



 

 

 

Fig. 3 Solidification of a binary Al–4,5%-Cu alloy 
 

TABLE I 
THERMO-PHYSICAL PROPERTIES OF THE BRICK WALL AND PCM 

Parameter Value Unit 

BRICKk
 

16,8 (W/m K) 

,p BRICKC
 

875 (J/kg K) 

BRICK
 

2600 (kg/m3) 

,PCM solidk
 

1 (W/m K) 

,PCM liquidk
 

10 (W/m K) 

, ,p PCM solidC
 

1800 (J/kg K) 

, ,p PCM liquidC
 

1800 (J/kg K) 

PCM
 

2100 (kg/m3) 

PCM
 

5,1 x 105 (J/kg) 

solT
 

1213 (K) 

liqT
 

1233 (K) 

 

 

Fig. 4 The inverse problem: kBrick, kPCM,solid, kPCM,liquid and q"(t) are 
unknown. They are determined from temperatures taken by probes 

(sensor #1 or sensor #2) embedded into the brick wall 

III. THE INVERSE MODEL  

In the direct model presented above, all the physical and the 
geometrical properties are known. For the inverse model, it is 
assumed that the parameters of: the heat flux q"(t), the thermal 
conductivity of the brick wall kBrick, the thermal conductivity 

in the solid PCM kPCM,solid and in the liquid PCM kPCM,liquid are 
unknown (Fig. 4). 

The objective of the inverse model is to determine the 
unknown thermal parameters for q"(t) and thermal 
conductivities, i.e. 

0 1 , ,;  ; ;  ; .brick PCM solid PCM liquidP Q Q k k k   


The additional information required for the estimation of these 
thermal parameters, is the time-varying temperature recorded 
by a sensor (thermocouple) embedded into the refractory brick 
wall Fig. 4. Once the thermal parameters are estimated, the 
bank thickness E(t) is determined from the direct model 
presented above. 

The estimation of the thermal parameters from measured 
can be constructed as a problem of minimization of the least 
square norm  P


: 

 

     
2

1

ˆ ,
I

i i
i

P Y t T t P


    
   (7) 

 
P = (P1, P2,…P5) is the set of the unknown thermal 
parameters. I is the total number of measurements. Y(ti) are the 
temperatures measured by the sensor. In the present study, 
these temperatures are ‘generated’ from the solution of the 
direct model.  ˆ ,iT t P

  are the estimated temperatures from the 

inverse model. 
The Levenberg–Marquardt Method was adopted for 

minimizing the least square norm, (7). The incremental value 
of the unknown parameter ΔP, is expressed as: 

 

      
1T T

k k k k k kJ J J PP Y T


      


     
 (8) 

 
k is a positive damping parameter. More details on the 

choice and the update of this parameter are provided in [15]. 
k


is the diagonal matrix of  T
k kJ J
 

. The superscript ‘T’ 

denotes the transpose of the matrix. The superscripts "  "


 and

"  "


 refer to the matrix and vector notation, respectively. kJ


is 
the Jacobian matrix. It is given by:  
 

 

1 1 1 1 1

1 2 3 4 5
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T T TT T
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 (9)  

 
The Jacobian matrix (the sensitivity matrix) plays a very 

important role in the estimation of the parameters. There are 
several approaches for computing the sensitivity coefficients 
∂Ti/∂Pj [16]. In this study, the sensitivity coefficients are 
approximated with a finite difference: 
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1 1
ˆ ˆ; , ..., , ... ; , ..., , ...ˆ

2

i j j

ij

N i j j Ni

j j

T t P P P P T t P P

P
J

P PT

P

 



  
 


(10)  

 

The parameter perturbation  jP  is set to  1 jP  .  is a 

small number. The subscripts i and j represent the time and the 
parameter respectively. 

In order to diminish the computational effort, the Jacobian 
matrix is updated using the Broyden update expression [17].  

For the first iteration, for every 2*N iterations and for 
iterations that satisfy    P P P     , the sensitivity 

coefficients ∂Ti/∂Pj of the Jacobian matrix are estimated with 
(10). For every other iteration, the Jacobian matrix is updated 
using the Broyden expression:  

 

  1 1

1

1 1

1 1

ˆ ˆ
 k

T
k k

T
k k

k k k

k

T T J
J

P

P
J

P

P

 








 

 

 
   (11)  

 

1kP  is the incremental value of the unknown parameters. Jk 

and Jk-1 are the Jacobian matrices at the current and previous 
iteration, respectively. 

Convergence of the LMM is declared when one of the 
following criteria is satisfied 

 

   

 

1

1

21

1
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ˆ ,T
i i
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k

k

J Y t T t P

P P
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 (12)  

 

 1 2 3;  ;      are small numbers. 

The Levenberg–Marquardt computational procedure for the 
inverse problem is summarized as: 
Step 1: Solve the direct problem (1)-(5) in order to obtain the 

temperature field Texact. 
Step 2: Compute the least square norm  P  from (7). 

Step 3: Compute the sensitivity coefficients according to (10) 
or the Broyden update expression (11).  

Step 4: Compute the increment ΔP of the estimated parameters 
from (8). 

Step 5: Solve the direct problem with the new estimate Pk+1 in 
order to find T(Pk+1). Then compute  1kP   as 

defined in step 2. 
Step 6: Check for convergence as defined in (12). If 

convergence is not achieved, go back to Step 3, update 
the sensitivity coefficients and  P . 

Once the vector of the thermal parameters has been 
estimated, the bank E(t) is easily determined from the direct 
model. 

IV. STATISTICAL ANALYSIS FOR PARAMETERS ESTIMATION 

In order to assess the accuracy and the uniqueness of the 
solution and to obtain confidence intervals, a statistical 

analysis for parameter estimation was performed. Moreover, it 
was assumed that the signal temperature is contaminated with 
measurement errors. For distributed measurement errors with 
zero mean and constant variance 2 , the standard deviation of 
the estimated parameters can be defined as [16]  

 
1

 
j

T

p T

T T
diag

P P
 


               

 (13)  

  
Assuming a normal (or Gaussian) distribution for 

temperature measurement errors and 99% confidence, the 
bounds for the computed quantities

jP  are determined as 

 

    ˆ ˆ,

Probability:

ˆ ˆ2.576 2.576 99 %
j j

j j exact jP P
P P P     

 (14)  

 
ˆ

jP  are the estimated values of the unknown parameters, 

,j exactP , for (j=1…5), and 
ˆ

jP
  are the standard deviations 

obtained from (13). 

V. RESULTS AND DISCUSSION  

The above inverse heat transfer computational procedure 
was employed to predict simultaneously the heat flux q"(t) and 
the thermal conductivities (kBrick, kPCM,solid and kPCM,liquid) inside 
a high-temperature metallurgical reactor (Fig. 4). Once these 
parameters are estimated, the time-varying bank thickness E(t) 
is calculated from the direct model presented in Section II. 

The measured temperatures were collected with a sensor 
embedded into the refractory brick wall at two different 
locations: The first location, called ‘Sensor#1’, is near the 
outer surface of the brick wall. The second position, 
‘Sensor#2’, is close to the molten material PCM (Fig. 4). The 
total number of temperature measurements I during the 
interval 0, 400000	  is 2000. 

Note that the uniqueness and the accuracy of the inverse 
procedure have been thoroughly tested with noisy data and for 
different positions of the sensor. These results are not reported 
here.  

For the sake of comparing the inverse predictions ‘Inverse 
model’ to the exact solution ‘Direct model’, three different 
estimation errors are defined in the following manner:  
 

 
   

 
E 1ror 00r

i iexact inverse

x

E

i e act

t

E t E t

E t


   (15) 

 

 
   

 

2

1

1
10RRMSE % 0

I
i iexact inverse

i i exact

E t

E t E t

I E t

 
    

 
  (16) 

  

 % 100 exact inverse
P

exact

P P
Error

P


   (17)  
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The effect of the sensor location (Sensor#1 and Sensor#2) 
on the estimation of the unknown parameters is summarized in 
Table II. It is seen that the error on the parameters estimation 
is less than 0,7%. It is also observed that sensor#2 (embedded 
deeper into the brick wall) provides the best parameter 
estimation. 

The convergence for the unknown thermal parameters

0 1 , ,;  ; ;  ;  brick PCM solid PCM liquidP Q Q k k k   


 is plotted in Fig. 

5.  
 

TABLE II 
EFFECT OF THE SENSOR POSITION 

 
 Sensor#1 Sensor#2 

PExact PInverse ErrorP % PInverse ErrorP % 

Q0 (W/m2) 6000 5998.29 0,03 6001.84 0,03 

Q1 (W/m2) 5000 5003.46 0,07 5001.17 0,02 

kbrick (W/m k) 16.8 16.88 0,48 16.85 0,30 

ksolid (W/m k) 1 1.00 0.00 1.00 0.00 

kliquid (W/m k) 10 9.93 0,70 9.99 0,10 

 

 

Fig. 5 Convergence of the parameter values (Sensor#1, no noise) 
 

The finite-difference approximation of the sensitivity 
coefficients, (9), requires the solution of the direct problem 
five times (number of unknown parameters) per iteration. As a 
result, the computations may quickly become prohibitive. To 
alleviate the computational effort, the sensitivity matrix was 
updated with the BM [17]. This strategy has already been 
applied successfully in the field of inverse heat transfer 
(IHTP) [18], [19]. Table III shows that the solution using the 
LMM combined with BM (LMM/BM) is achieved more 
efficiently than that with the LMM.  

 
TABLE III 

THE CONVERGENCE OF LMM AND LMM/BM 

 Direct model calls CPU time (s) 

LMM 90 4468,92 

LMM/BM 79 3502,98 

 

All simulations were conducted with the Matlab software 
running on an Intel ® Core(TM) i5-2520M CPU @ 2,50GHz. 

The effect of the temperature-sensor location on the 
accuracy of the predicted bank thickness E(t) is depicted in 

Fig. 6. For both sensors, i.e., sensor#1 and sensor#2, the 
ErrorE(t) on the predicted bank thickness remains less than 
0.1%. The effect of the sensor location appears to be 
insignificant [1]. Therefore, for practical reasons, sensor#1 is 
recommended over sensor#2. It is indeed much safer and 
easier to embed a sensor near the outer surface of the 
refractory brick wall. This result should be of interest to the 
process industry.  
 

 
Fig. 6 Effect of the sensor position on the predicted bank thickness 

E(t) 
 

 

Fig. 7 Effect of the total number of measurements on the ErrorE(t) 

 
Fig. 7 shows the effect of the total number of measurements 

I on the accuracy of the predictions for the bank thickness. 
Accuracy improves when the total number of measurements is 
raised from I=800 to I=2000. The higher the total number of 
measurements, the better.  

In order to mimic temperature measurement errors, a 
random error noise

i is added to the exact temperature
exactT


 

generated by the direct model in the following manner: 
 

 (t ) (t )i exact i iT T  
    (18)  
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 is the standard deviation of the measurement errors, which 
may take the value of 2% Tmax and 4% Tmax. Tmax is the 
maximum temperature measured by the sensor. 

 

 

Fig. 8 Measured and inverse temperature (Sensor#1 and Sensor#2, 
σ=2% Tmax) 

 

 

Fig. 9 Effect of the noise on the predicted bank thickness from sensor 
#1 

 
Fig. 8 compares the measured temperatures provided by the 

direct model with σ=2%Tmax to the estimated temperatures 
predicted by the inverse model with both sensors. The 
confidence intervals

ˆ2.576 
jP

 are also shown. 

Fig. 9 illustrates the effect of the noise level on the 
predicted bank thickness E(t) using sensor #1. As expected, 
when the noise level rises to 2%Tmax, the relative root-mean-
square error for the bank thickness RRMSEE(t) increases form 
0,03% to 1,43%. Nevertheless, the inverse model remains 
stable and accurate with experimental noise.  

VI. CONCLUSION 

An inverse heat transfer method was presented for 
predicting the time-varying thickness of the protective bank 
inside a high-temperature metallurgical reactor. It was shown 
that the inverse method may predict simultaneously the heat 

flux q"(t), the thermal conductivity of the brick wall kBrick and 
the thermal conductivity of the solid and liquid phases of the 
PCM (kPCM,solid and kPCM,liquid). The proposed inverse method 
rests on the LMM/BM. It was shown that LMM/BM is 
computationally more efficiently than the LMM. The effect of 
the measurement noise, of the location of the temperature 
sensors and of the total number of measurements on the 
inverse predictions was investigated. Recommendations were 
made concerning the location of the sensor embedded into the 
refractory brick wall.  
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NOMENCLATURE 

pC    specific heat (J/kg K) 

dt    time step (s) 

f    liquid fraction 

h     heat transfer coefficient (W/m2K) 
I     total number of measurements 
J    Jacobian matrix 
k     thermal conductivity (W/mK) 

BrickL   width of the brick wall (m) 

PCML   width of the PCM layer (m) 

N    number of unknown parameters  

 ''q t   heat flux (W/m2) 

P    vector of unknown parameter   
PCM   phase change material 
Error   estimation errors (%) 

 E t   bank thickness (m) 

t     time (s)  

T̂    estimated temperature (K) 
x     Cartesian spatial coordinate (m) 
Y    measured temperature (K) 
     small number 
    damping parameter 

    density (kg/m3) 

  standard deviation of the measurement error 
    sum of squares norm  

     small number 
H    enthalpy (J/m3) 

    difference 
k    diagonal matrix 

    heat of fusion (J/kg) 
    random number  

Subscripts 

0     initial value  
    ambiant 
Brick   brick wall 
Exact   exact solution  

 E t   bank thickness  

liq    liquidus 
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liquid   liquid (PCM) 

max   maximum 
PCM   phase change material 

 ''q t   heat flux 

sol    solidus  
solid   solid (PCM) 

Superscripts 

k     time iteration number 
T    transposed matrix 
     estimated parameter 

    vector  
    matrix. 
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