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Abstract—This paper presents a method to take into account
the fluid-structure coupling into an inverse method, the Force
Analysis Technique (FAT). The FAT method, also called RIFF method
(Filtered Windowed Inverse Resolution), allows to identify the force
distribution from local vibration field. In order to only identify the
external force applied on a structure, it is necessary to quantify the
fluid-structure coupling, especially in naval application, where the
fluid is heavy. This method can be decomposed in two parts, the first
one consists in identifying the fluid-structure coupling and the second
one to introduced it in the FAT method to reconstruct the external
force. Results of simulations on a plate coupled with a cavity filled
with water are presented.

Keywords—Fluid-structure coupling, inverse methods, naval,
vibrations.

I. INTRODUCTION

THE study of aeroacoustic and hydroacoustic noises is

an important industrial research field, especially in the

transport industry [1]-[4]. Actually, flows induced by a fluid

over a structure create a source of internal noise which cannot

be neglected. To minimize its impact, it is necessary to have

a good knowledge of this kind of excitation. In fact, turbulent

flow is due to the presence of obstacles or boundary layers near

the structure [5]. On one hand, it creates pressure fluctuations

near the structure which are called the convective part of the

excitation, and on the other hand, it generates acoustic waves

in every direction, which correspond to the acoustic part of

the excitation. Physically, the acoustic component is much

smaller than the convective part, in terms of energy, which

makes it really hard to measure. However, depending on the

application, the acoustic component can be the main cause of

acoustic radiation of the structure inside the cabin.

The aim of this study is to identify the wall pressure which

excites the structure, for the aeronautic and naval domains,

by using an inverse vibration method, such as FAT (Force

Analysis Technique), also called RIFF (Filtered Windowed

Inverse Resolution) [6], [7]. The main advantage of this

technique is its ability to identify the force distribution from

local vibration measurements. In order to do that, the FAT

method is applied to simulations of a plate excited by a

turbulent flow for both domains, aeronautic and naval [8].

In [8], the potentiality of the FAT method is pointed out.
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However, in the case of the naval domain, with a subsonic

flow in an heavy fluid, the fluid-structure coupling has been

neglected. Yet, when considering a heavy fluid, the acoustic

radiation of the structure can interfere with the vibration of the

structure, the fluid-structure coupling need to be taken into

account. This paper is the development of a previous study

[8], it offers a method based on the FAT method to take into

account the fluid-structure coupling, using the case of a plate

coupled with a cavity.

The first part of this document details the structure studied

and the calculation of the vibration for this system. The second

part presents the Force Analysis Technique method (FAT).

The last part introduces the method to take into account the

fluid-structure coupling in FAT method and results obtained

for the plate coupled with a cavity system.

II. DIRECT PROBLEM

In this study, the system studied is a plate coupled with

a cavity filled with water (see Fig. 1). We consider a rigid

cavity of size Lx, Ly and Lz along x, y and z. The plate is

placed in z = Lz and of size Lx and Ly . The parameters of

the structure studied are presented in Table I.

Fig. 1 Scheme of a plate coupled with a rigid cavity

The analytical problem for a plate coupled with a rigid
cavity is detailed in [9]-[11] and presented here. In the
cavity, the pressure is described by the inhomogeneous wave
equation:

∇2p(r, t)− ∂p(r, t)
c2∂t2

= −ρ0
∂q(r0, t)

∂t
, (1)
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TABLE I
PARAMETERS OF THE PLATE COUPLED WITH A CAVITY FILLED WITH

WATER

Dimension along x Lx = 1 m
Dimension along y Ly = 1 m
Dimension along z Lz = 1 m
Young modulus E = 210.109 Pa
Poisson coefficient ν = 0.3
Density of the structure ρ = 7800 kg.m−3

Plate thickness h = 8.10−3 m
Damping ξ = 0.005
Density of the fluid ρ0 = 1000 kg.m−3

Speed of sound in the fluid c = 1500 m.s−1

with q(r0, t) the monopole source output, ρ0 the fluid density,
c the sound speed in the fluid and p(r, t) the pressure in the
cavity. Boundary vibrations are represented as source output
qb:

qb(rs, t) = −∂2w(rs, t)
∂t2

, (2)

with w the plate normal displacement. The wave equation
becomes:

∇2p(r, t)− ∂2p(r, t)
c2∂t2

= −ρ0
∂q(r0, t)

∂t
+ ρ0

∂2w(rs, t)
∂t2

. (3)

The pressure can be written as a sum over eigenmodes:

p(r, t) =
∞∑

n=0

pn(t)Ψn(r), (4)

where Ψn(r) are the cavity eigenmodes and pn(t) the pressure
projected over the cavity eigenmodes:

pn(t) =

∫
p(r, t)Ψn(r) dV. (5)

The wave equation can be written as:

∑
n

−k2
npn(t)Ψn(r)− 1

c2
∂2pn(t)

∂t2
Ψn(r) =

− ρ0
∂q(r0, t)

∂t
+ ρ0

∂2w(rs, t)
∂t2

. (6)

Multiplying by Ψm(r) and using orthogonality properties,
we obtain:

∂2pn(t)

∂t2
+ω2

npn(t) =
ρ0c

2

Λn

(
Q′

n(t)−
∫
S

∂2w(rs, t)
∂t2

Ψn(rs) dS

)
,

(7)

with the generalised output Q′
n(t) =

∫
S

∂q(r0, t)
∂t

Ψn(rs) dS

and Λn =

∫
V

Ψ2
n(rs) dV .

The vibration field w can be decomposed over plate
eigenmodes, Φp:

w(rs, t) =
∞∑
p=0

wp(t)Φp(rs). (8)

The wave equation is then:

∂2pn(t)

∂t2
+ ω2

npn(t) =

ρ0c
2

Λn

(
Q′

n(t)−
∫
S

∑
p

∂2wp(t)

∂t2
Φp(rs)Ψn(rs) dS

)
. (9)

In harmonic conditions and with the introduction of
damping, the equation becomes:

−ω2pn + 2jξωωnpn + ω2
npn =

ρ0c
2

Λn

(
jωQn + ω2

∑
p

wpCpn

)
,

(10)

with the coupling term Cpn =

∫
S

Φp(rs)Ψn(rs) dS.

The vibration of the plate is described by the motion
equation:

D∇4w(rs, t) + ρh
∂2w(rs, t)

∂t2
= f(rs0) + p(rs, t), (11)

where D is the flexural rigidity, ρ the plate density, h the
plate thickness, f(rs0) the external pressure and p(rs, t) the
pressure in the cavity. With a projection over plate eigenmodes
and orthogonality properties, the motion equation becomes:

ω2
pwp +

∂2wp

∂t2
=

1

ρhΛp

(
Fp +

∫
S

p(rs, t)Φp(rs) dS

)
, (12)

with Λp =

∫
S

Φ2
p(rs) dS and Fp =

∫
S

f(rs0)Φp(rs) dS.

Using (4), harmonic conditions and introduction of
damping, it gives:

(
ω2
p + 2jξωωp − ω2)wp =

1

ρhΛp

(
Fp +

∑
n

pnCpn

)
. (13)

We obtain two coupled equation, (10) and (13), which under
matrix form gives:[

Z11 −C
−ω2CT Z22

] [
W
P

]
=

[
F
Q′

]
, (14)

with

Z11 = diag((ω2
p + 2jξωωp − ω2)ρhΛp),

Z22 = diag((ω2
n + 2jξωωn − ω2)

Λn

ρ0c2
),

C = [Cpn],

W = [w1w2...wp],

P = [p1p2...pn],

F = [F1F2...Fn],

Q′ = jω[Q1Q2...Qn].

The pressure p and displacement w are obtained by inverting
system (14): [

W
P

]
=

[
Z11 −C

−ω2CT Z22

]−1 [
F
Q′

]
. (15)

III. INVERSE PROBLEM

The FAT method developed by Pézerat and Guyader [6]

allows to identify the force distribution from local vibration

field. It is based on the inverse resolution of the motion

equation. For a plate, the motion equation is presented in (11).
Partial derivatives are estimated by a finite difference

scheme developed at the first order with a regular spatial mesh
[7]. In order to estimate the force distribution on the central
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(13 points)

Δx

Δy

Fig. 2 Finite difference scheme which allows the estimation of the force on
the central point of the scheme

point of the scheme, 13 points are needed (see Fig. 2), where
Δx and Δy are spatial steps along x and y:

FFAT (x, y, ω) = D
(
δ4xΔx

+ δ4yΔy
+ 2δ2x2yΔx,y

)
− ρhω2w(x, y, ω).

(16)

The advantage of this method is that it is not necessary

to measure the vibration field on the entire structure or to

know the boundary conditions, because the motion equation

describes a local dynamic equilibrium which is sufficient

to calculate FFAT . However, when the vibration field is

noisy, the inverse problem becomes unstable, and it gives

results far from the force really applied, with higher levels.

Indeed, derivatives increase fast variations (small wavelengths

linked to measurement noise). For the inverse problem studied,

spatial derivatives are of the fourth order so this considerably

increases this phenomenon. In order to avoid this, it is

necessary to remove the high wavenumber component polluted

by noise in the force distribution obtained. The regularization

notion is then introduced, it consists in filtering the high

wavenumbers using a low pass filter with a finite impulse

response. The filter response generally used is a sinc function

weighted by a Hanning window [2].

The filtering operation consists in a discrete convolution

between FFAT and the filter impulse response. In order to

avoid to inject the filter response in the motion equation, the

filter is applied to the force distribution, not to the vibration

field. Filtering allows to remove the high wavenumbers of

the force distribution. However, beyond this domain, the force

distribution is unknown so uncertainties on the edges of the

domain studied may appear. In order to avoid edge effects, the

force distribution FFAT is windowed before being filtered, to

annul the force on the edges of the domain.

A Tukey window is used, made of half Hanning windows

at extremities and equal to 1 on the remaining domain [2]

(see Fig. 3). The width of the half Hanning windows is the

cut-off wavelength. The choice of the cut-off wavelength is

essential in the regularisation, it has to be high enough not to

degrade results and small enough to eliminate aberrant forces

due to measurement errors. The cut-off wavelength is chosen

proportional to the structural wavenumber [6]:

kc = akf , (17)

where a is the regularisation parameter.

IV. INTRODUCTION OF THE FLUID-STRUCTURE COUPLING

INTO THE FAT

In order to take into account the fluid-structure coupling in
the FAT method, a method based on the identification of an

Fig. 3 (a) Spatial windowing used in FAT at 500 Hz with a=4 and in one
dimension (b) at y = 0.5 m

effective wavenumber which takes into account the coupling
is used. If we consider a finite plate with a fluid on one side,
the plate motion equation considering fluid-structure coupling
can be written as:

∇4w(x, y, ω)− k4
fw(x, y, ω) =

p(x, y, ω)

D
+

pcoupling(x, y, ω)

D
.

(18)

The motion equation can also be written as:

∇4w(x, y, ω)− γ4w(x, y, ω) =
p(x, y, ω)

D
, (19)

with γ the effective wavenumber which takes into account the
fluid-structure coupling:

γ4 = k4
f +

pcoupling(x, y, ω)

Dw(x, y, ω)
. (20)

The aim of this method is to calculate the effective

wavenumber γ4. In order to calculate the effective

wavenumber γ4, a punctual force is applied to the plate (here

in x = 0.2 m and y = 0.5 m) and the FAT method is applied

to a zone without stress (see Fig. 4). The second member of

(19) is then equal to zero:

Δ2w − γ4w = 0. (21)

It is then possible to determine γ4:

γ4 =
Δ2w

w
. (22)

Results obtained for the identification of γ are presented

in Fig. 5. The analytical effective wavenumber, γan, is

calculated using the pressure and displacement obtained with

the analytical problem, see (23). The effective wavenumber

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:11, No:2, 2017 

344International Scholarly and Scientific Research & Innovation 11(2) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
1,

 N
o:

2,
 2

01
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
06

38
2.

pd
f



Fig. 4 Scheme of a plate coupled with a rigid cavity, with a punctual force
F1 outside the zone where FAT is applied

identified by FAT, γFAT coincides well with the one calculated

analytically.

γan = 4

√
k4f +

p

Dw
, (23)

where p and w are respectively the pressure and displacement

obtained with the analytical problem.

Fig. 5 (a) Evolution of γ (analytical and identified by FAT) and kf with
frequency in one point. Spatial evolution at 500 Hz of (b) γan obtained

analytically, (c) γFAT identified by FAT

Then, once γ is known, a punctual force is applied to the

zone where γ is identified, here in x = 0.6 m and y = 0.5 m
(see Fig. 6), and FAT method is used with the effective

wavenumber previously determined. The force distribution

reconstructed by FAT, using either the wavenumber γan,

calculated analytically, or the wavenumber γFAT identified by

FAT, or kf the flexural wavenumber, are presented in Fig. 7.

On the one hand, results show that the flexural wavenumber

is not sufficient to correctly identify the force distribution. On

the other hand, the use of the effective wavenumber in FAT

allows to take into account the fluid structure coupling and to

accurately identify the force distribution.

Fig. 6 Scheme of a plate coupled with a rigid cavity, with a punctual force
F2 inside the zone where FAT is applied

Fig. 7 Reconstructed force distribution at 500 Hz using (a) γFAT obtained
with FAT, (b) γan obtained analytically, (c) kf

V. CONCLUSION

This paper presents a method to take into account the

fluid-structure coupling in the FAT method. This method is

based on the one hand, on the identification of an effective

wavenumber, γ, which takes into account the fluid-structure

coupling, by using the FAT method. On the other hand, the

method uses the re-introduction of this effective wavenumber

γ into the FAT method to only identify the external forces

applied to the structure. This method is applied to a plate

coupled with a rigid cavity full of water. Results involving a

punctual force excitation show that the effective wavenumber

γ is correctly identified. The use of this effective wavenumberγ
into FAT allows us to only identify the force distribution due

to the punctual force, contrary to results obtained using the

flexural wavenumber, kf . Further work will focus on the one

hand, on an experimental validation of this method to take

into account the fluid-structure coupling, on the other hand, on

its optimisation and its application in the case of a structure

excited by turbulent flow.

ACKNOWLEDGMENT

This presentation is part of the VibroLeg project managed

by IRT Jules Verne (French Institute in Research and

Technology in Advanced Manufacturing Technologies for

Composite, Metallic and Hybrid Structures). The authors

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:11, No:2, 2017 

345International Scholarly and Scientific Research & Innovation 11(2) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
1,

 N
o:

2,
 2

01
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
06

38
2.

pd
f



wish to associate the industrial and academic partners of

this project, respectively Airbus, G.E., Cetim, Daher, DNCS,

Bureau Veritas, STX, LAUM and CNRS.

REFERENCES

[1] B. Arguillat, “étude expérimentale et numérique de champs de pression
pariétale dans l’espace des nombres d’onde, avec application aux
vitrages automobiles,” PhD Thesis, Ecole Centrale de Lyon, Laboratoire
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