Search results for: numerical methods.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5964

Search results for: numerical methods.

3474 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
3473 Matrix-Interleaved Serially Concatenated Block Codes for Speech Transmission in Fixed Wireless Communication Systems

Authors: F. Mehran

Abstract:

In this paper, we study a class of serially concatenated block codes (SCBC) based on matrix interleavers, to be employed in fixed wireless communication systems. The performances of SCBC¬coded systems are investigated under various interleaver dimensions. Numerical results reveal that the matrix interleaver could be a competitive candidate over conventional block interleaver for frame lengths of 200 bits; hence, the SCBC coding based on matrix interleaver is a promising technique to be employed for speech transmission applications in many international standards such as pan-European Global System for Mobile communications (GSM), Digital Cellular Systems (DCS) 1800, and Joint Detection Code Division Multiple Access (JD-CDMA) mobile radio systems, where the speech frame contains around 200 bits.

Keywords: Matrix Interleaver, serial concatenated block codes (SCBC), turbo codes, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
3472 New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints

Authors: Nebojsa B. Raicevic, Slavoljub R. Aleksic, Sasa S. Ilic

Abstract:

A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.

Keywords: Cable joints, deflector's cones, equivalent electrodemethod, electric field distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
3471 Multi-Objective Fuzzy Model in Optimal Sitingand Sizing of DG for Loss Reduction

Authors: H. Shayeghi, B. Mohamadi

Abstract:

This paper presents a possibilistic (fuzzy) model in optimal siting and sizing of Distributed Generation (DG) for loss reduction and improve voltage profile in power distribution system. Multi-objective problem is developed in two phases. In the first one, the set of non-dominated planning solutions is obtained (with respect to the objective functions of fuzzy economic cost, and exposure) using genetic algorithm. In the second phase, one solution of the set of non-dominated solutions is selected as optimal solution, using a suitable max-min approach. This method can be determined operation-mode (PV or PQ) of DG. Because of considering load uncertainty in this paper, it can be obtained realistic results. The whole process of this method has been implemented in the MATLAB7 environment with technical and economic consideration for loss reduction and voltage profile improvement. Through numerical example the validity of the proposed method is verified.

Keywords: Fuzzy Power Flow, DG siting and sizing, LoadUncertainty, Multi-objective Possibilistic Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
3470 An MCDM Approach to Selection Scheduling Rule in Robotic Flexibe Assembly Cells

Authors: Khalid Abd, Kazem Abhary, Romeo Marian

Abstract:

Multiple criteria decision making (MCDM) is an approach to ranking the solutions and finding the best one when two or more solutions are provided. In this study, MCDM approach is proposed to select the most suitable scheduling rule of robotic flexible assembly cells (RFACs). Two MCDM approaches, Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) are proposed for solving the scheduling rule selection problem. The AHP method is employed to determine the weights of the evaluation criteria, while the TOPSIS method is employed to obtain final ranking order of scheduling rules. Four criteria are used to evaluate the scheduling rules. Also, four scheduling policies of RFAC are examined to choose the most appropriate one for this purpose. A numerical example illustrates applications of the suggested methodology. The results show that the methodology is practical and works in RFAC settings.

Keywords: AHP, TOPSIS, Scheduling rules selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
3469 Aeroelasticity Analysis of Rotor Blades in the First Two Stages of Axial Compressor in the Case of a Bird Strike

Authors: R. Rzadkowski, V. Gnesin, M. Drewczyński, R. Szczepanik

Abstract:

A bird strike can cause damage to stationary and rotating aircraft engine parts, especially the engine fan. This paper presents a bird strike simulated by blocking four stator blade passages. It includes the numerical results of the unsteady lowfrequency aerodynamic forces and the aeroelastic behaviour caused by a non-symmetric upstream flow affecting the first two rotor blade stages in the axial-compressor of a jet engine. The obtained results show that disturbances in the engine inlet strongly influence the level of unsteady forces acting on the rotor blades. With a partially blocked inlet the whole spectrum of low-frequency harmonics is observed. Such harmonics can lead to rotor blade damage. The lowfrequency amplitudes are higher in the first stage rotor blades than in the second stage. In both rotor blades stages flutter appeared as a result of bird strike.

Keywords: Flutter, unsteady forces, rotor blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
3468 Numerical Simulation of the Kurtosis Effect on the EHL Problem

Authors: S. Gao, S. Srirattayawong

Abstract:

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature are defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the main parameters such as pressure distribution, minimal film thickness, viscosity, and density changes. The results obtained show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. A rough surface with kurtosis value of more than 3 has greater influence over the fluctuated shape of pressure distribution than in other cases.

Keywords: CFD, EHL, Kurtosis, Surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
3467 Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

Authors: M. Norouzi, M. H. Kayhani, M. R. H. Nobari, M. Karimi Demneh

Abstract:

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

Keywords: Viscoelastic, fluid flow, heat convection, CEF model, curved duct, square cross section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
3466 The Impact of an Air-Supply Guide Vane on the Indoor Air Distribution

Authors: C.-C. Tsao, S.-W. Nien, W.-H. Chen , Y.-C. Shih

Abstract:

Indoor air distribution has great impact on people-s thermal sensation. Therefore, how to remove the indoor excess heat becomes an important issue to create a thermally comfortable indoor environment. To expel the extra indoor heat effectively, this paper used a dynamic CFD approach to study the effect of an air-supply guide vane swinging periodically on the indoor air distribution within a model room. The numerical results revealed that the indoor heat transfer performance caused by the swing guide vane had close relation with the number of vortices developing under the inlet cold jet. At larger swing amplitude, two smaller vortices continued to shed outward under the cold jet and remove the indoor heat load more effectively. As a result, it can be found that the average Nusselt number on the floor increased with the increase of the swing amplitude of the guide vane.

Keywords: Computational Fluid Dynamics (CFD), dynamic mesh, heat transfer, indoor air distribution, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
3465 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
3464 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Authors: N. Bolong, J. Makinda, I. Saad

Abstract:

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via handson by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.

Keywords: Engineering education, open-ended laboratory, environmental engineering lab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
3463 Extraction and Characterisation of Protein Fraction from Date Palm Fruit Seeds

Authors: Ibrahim A. Akasha, Lydia Campbell, Stephen R. Euston

Abstract:

Date palm (Phoenix dactylifera L.) seeds are waste streams which are considered a major problem to the food industry. They contain potentially useful protein (10-15% of the whole date-s weight). Global production, industrialisation and utilisation of dates are increasing steadily. The worldwide production of date palm fruit has increased from 1.8 million tons in 1961 to 6.9 million tons in 2005, thus from the global production of dates are almost 800.000 tonnes of date palm seeds are not currently used [1]. The current study was carried out to convert the date palm seeds into useful protein powder. Compositional analysis showed that the seeds were rich in protein and fat 5.64 and 8.14% respectively. We used several laboratory scale methods to extract proteins from seed to produce a high protein powder. These methods included simple acid or alkali extraction, with or without ultrafiltration and phenol trichloroacetic acid with acetone precipitation (Ph/TCA method). The highest protein content powder (68%) was obtained by Ph/TCA method with yield of material (44%) whereas; the use of just alkali extraction gave the lowest protein content of 8%, and a yield of 32%.

Keywords: Date palm seed, Phoenix dactylifera L., extraction of date palm seed protein

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4593
3462 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation

Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei

Abstract:

Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.

Keywords: Hammershock, IDDES, S-bend, surge signature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
3461 Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity

Authors: Bouchmel Mliki, Chaouki Ali, Mohamed Ammar Abbassi

Abstract:

In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (Ra = 103−106), nanoparticle volume concentration (f = 0-0.04) and Hartmann number (Ha = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at Ra = 106 more than other Raleigh numbers, as the least effect is observed at Ra = 103. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Hartmann, heat generation or absorption coefficient and Rayleigh numbers.

Keywords: Heat transfer, linearly/sinusoidally heated, Lattice Boltzmann Method, natural convection, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
3460 Semi-Lagrangian Method for Advection Equation on GPU in Unstructured R3 Mesh for Fluid Dynamics Application

Authors: Irakli V. Gugushvili, Nickolay M. Evstigneev

Abstract:

Numerical integration of initial boundary problem for advection equation in 3 ℜ is considered. The method used is  conditionally stable semi-Lagrangian advection scheme with high order interpolation on unstructured mesh. In order to increase time step integration the BFECC method with limiter TVD correction is used. The method is adopted on parallel graphic processor unit environment using NVIDIA CUDA and applied in Navier-Stokes solver. It is shown that the calculation on NVIDIA GeForce 8800  GPU is 184 times faster than on one processor AMDX2 4800+ CPU. The method is extended to the incompressible fluid dynamics solver. Flow over a Cylinder for 3D case is compared to the experimental data.

Keywords: Advection equations, CUDA technology, Flow overthe 3D Cylinder, Incompressible Pressure Projection Solver, Parallel computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819
3459 Recurrent Radial Basis Function Network for Failure Time Series Prediction

Authors: Ryad Zemouri, Paul Ciprian Patic

Abstract:

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.

Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
3458 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry

Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas

Abstract:

This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors”.

The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups.

The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared.

REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies. 

Keywords: Complex fuel geometry, PARET, RELAP5, WWR-SM reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
3457 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
3456 Optimal Water Allocation: Sustainable Management of Dam Reservoir

Authors: Afshin Jahangirzadeh, Shatirah Akib, Babak Kamali, Sadia Rahman

Abstract:

Scarcity of water resources and huge costs of establishing new hydraulic installations necessitate optimal exploitation from existing reservoirs. Sustainable management and efficient exploitation from existing finite water resources are important factors in water resource management, particularly in the periods of water insufficiency and in dry regions, and on account of competitive allocations in the view of exploitation management. This study aims to minimize reservoir water release from a determined rate of demand. A numerical model for water optimal exploitation has been developed using GAMS introduced by the World Bank and applied to the case of Meijaran dam, northern Iran. The results indicate that this model can optimize the function of reservoir exploitation while required water for lower parts of the region will be supplied. Further, allocating optimal water from reservoir, the optimal rate of water allocated to any group of the users were specified to increase benefits in curve dam exploitation.

Keywords: Water resource management, water reservoirs, water allocation, GAMS, Meijaran dam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
3455 Numerical Simulation of the Bond Behavior between Concrete and Steel Reinforcing Bars in Specialty Concrete

Authors: Camille A. Issa, Omar Masri

Abstract:

In this study, the commercial finite element software ABAQUS was used to develop a three-dimensional nonlinear finite element model capable of simulating the pull-out test of reinforcing bars from underwater concrete. The results of thirty-two pull-out tests that have different parameters were implemented in the software to study the effect of the concrete cover, the bar size, the use of stirrups, and the compressive strength of concrete. The interaction properties used in the model provided accurate results in comparison with the experimental bond-slip results, thus the model has successfully simulated the pull-out test. The results of the finite element model are used to better understand and visualize the distribution of stresses in each component of the model, and to study the effect of the various parameters used in this study including the role of the stirrups in preventing the stress from reaching to the sides of the specimens.

Keywords: Bond strength, nonlinear finite element analysis, pull-out test, underwater concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4590
3454 Detection of Actuator Faults for an Attitude Control System using Neural Network

Authors: S. Montenegro, W. Hu

Abstract:

The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.

Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
3453 A Kernel Based Rejection Method for Supervised Classification

Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy

Abstract:

In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.

Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
3452 Creative Skills Supported by Multidisciplinary Learning: Case Innovation Course at the Seinäjoki University of Applied Sciences

Authors: Satu Lautamäki

Abstract:

This paper presents findings from a multidisciplinary course (bachelor level) implemented at Seinäjoki University of Applied Sciences, Finland. The course aims to develop innovative thinking of students, by having projects given by companies, using design thinking methods as a tool for creativity and by integrating students into multidisciplinary teams working on the given projects. The course is obligatory for all first year bachelor students across four faculties (business and culture, food and agriculture, health care and social work, and technology). The course involves around 800 students and 30 pedagogical coaches, and it is implemented as an intensive one-week course each year. The paper discusses the pedagogy, structure and coordination of the course. Also, reflections on methods for the development of creative skills are given. Experts in contemporary, global context often work in teams, which consist of people who have different areas of expertise and represent various professional backgrounds. That is why there is a strong need for new training methods where multidisciplinary approach is at the heart of learning. Creative learning takes place when different parties bring information to the discussion and learn from each other. When students in different fields are looking for professional growth for themselves and take responsibility for the professional growth of other learners, they form a mutual learning relationship with each other. Multidisciplinary team members make decisions both individually and collectively, which helps them to understand and appreciate other disciplines. Our results show that creative and multidisciplinary project learning can develop diversity of knowledge and competences, for instance, students’ cultural knowledge, teamwork and innovation competences, time management and presentation skills as well as support a student’s personal development as an expert. It is highly recommended that higher education curricula should include various studies for students from different study fields to work in multidisciplinary teams.

Keywords: Multidisciplinary learning, creative skills, innovative thinking, project-based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502
3451 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments

Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas

Abstract:

Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.

Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
3450 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
3449 Effects of Mold Surface Roughness on Compressible Flow of Micro-Injection Molding

Authors: Nguyen Q. M. P., Chen X., Lam Y. C., Yue C. Y.

Abstract:

Polymer melt compressibility and mold surface roughness, which are generally ignored during the filling stage of the conventional injection molding, may become increasingly significant in micro injection molding where the parts become smaller. By employing the 2.5D generalized Hele-Shaw model, we presented here the effects of polymer compressibility and mold surface roughness on mold-filling in a micro-thickness cavity. To elucidate the effects of surface roughness, numerical investigations were conducted using a cavity flat plate which has two halves with different surface roughness. This allows the comparison of flow field on two different halves under identical processing conditions but with different roughness. Results show that polymer compressibility and mold surface roughness have effects on mold filling in micro injection molding. There is in shrinkage reduction as the density is increased due to polymer melt compressibility during the filling stage.

Keywords: Compressible flow, Micro-injection molding, Polymer, Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
3448 Mixed-Mode Study of Rock Fracture Mechanics by using the Modified Arcan Specimen Test

Authors: R. Hasanpour, N. Choupani

Abstract:

This paper studies mixed-mode fracture mechanics in rock based on experimental and numerical analyses. Experiments were performed on sharp-cracked specimens using the modified Arcan specimen test loading device. The modified Arcan specimen test was, in association with a special loading device, an appropriate apparatus for experimental mixed-mode fracture analysis. By varying the loading angle from 0° to 90°, pure mode-I, pure mode-II and a wide range of mixed-mode data were obtained experimentally. Using the finite element results, correction factors applied to the rectangular fracture specimen. By employing experimentally measured critical loads and the aid of the finite element method, mixed-mode fracture toughness for the limestone under consideration determined.

Keywords: Rock Fracture Mechanics, Mixed-mode Loading, Finite Element Analysis, Arcan Test specimen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
3447 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: Laser cladding, temperature, profile, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
3446 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging

Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig

Abstract:

A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.

Keywords: Clogging, nozzle, numerical model, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
3445 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: Bearing strength, bolted joint, degradation scheme, progressive damage model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670