Semi-Lagrangian Method for Advection Equation on GPU in Unstructured R3 Mesh for Fluid Dynamics Application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Semi-Lagrangian Method for Advection Equation on GPU in Unstructured R3 Mesh for Fluid Dynamics Application

Authors: Irakli V. Gugushvili, Nickolay M. Evstigneev

Abstract:

Numerical integration of initial boundary problem for advection equation in 3 ℜ is considered. The method used is  conditionally stable semi-Lagrangian advection scheme with high order interpolation on unstructured mesh. In order to increase time step integration the BFECC method with limiter TVD correction is used. The method is adopted on parallel graphic processor unit environment using NVIDIA CUDA and applied in Navier-Stokes solver. It is shown that the calculation on NVIDIA GeForce 8800  GPU is 184 times faster than on one processor AMDX2 4800+ CPU. The method is extended to the incompressible fluid dynamics solver. Flow over a Cylinder for 3D case is compared to the experimental data.

Keywords: Advection equations, CUDA technology, Flow overthe 3D Cylinder, Incompressible Pressure Projection Solver, Parallel computation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1076496

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2855

References:


[1] A D Polyanin; V F Zaitsev. Handbook of Nonlinear Partial Differential Equations. - Chapman & Hall/CRC Press, Boca Raton, 2003.
[2] Douglas Enright, Frank Losasso, Ronald Fedkiw. A Fast and Accurate Semi-Lagrangian Particle Level Set Method. // Proceedings of the 4th ASME-JSME Joint Fluids Engineering Conference, number FEDSM2003, 45144. ASME, 2003.
[3] Chorda R, Blasco J.A., Fueyo N. An efficient particle-locating algorithm for application in arbitrary 2D and 3D grids// Int. J. of Multiphase Flow, 28, 2002 N9, 1565-1580.
[4] Volkov K.N., Emelyanov V.N. Implementation of the Lagrangian approach to the description of gas-particle flows on unstructured meshes.// J. Numerical methods and programming. Vol9, pp. 19-33, 2008.
[5] Paoliy R. , Poinsotz T., Shari K. Testing semi-Lagrangian schemes for two-phase flow applications.// Proceedings of the Summer Program 2006, pp213-222. Center for Turbulence Research, Toulouse, France.
[6] Chunlei Liang, Evstigneev N., A study of kinetic energy conserving scheme using finite volume collocated grid for LES of a channel flow. // Proceedings of the international conference on numerical methods in fluid dynamics. King's College London, Strand, WC2R 2LS, 2006, pp.61-79.
[7] Evstigneev N.M., Magnitskii N.A., Sidorov S.V. On the nature of turbulence flow in the backward face step problem // J. Differential equations, Vol.45, 2009, pp.69-73.
[8] Evstigneev N.M. Numerical integration of Poisson's equation using a graphics processing unit with CUDA-technology // J. Numerical methods and programming., Vol10, pp. 268-274, 2009.
[9] Evstigneev N.M., Magnitskii N.A., Sidorov S.V. New approach to the incompressible flow turbulence. // Proc. ISA RAS, Vol33, pp.49-65, 2008.
[10] Evstigneev N.M. Solution of 3D nonviscous compressible gas equations on unstructured meshes using the distributed computing approach. // J. Numerical methods and programming., Vol8, pp. 252-264, 2007.
[11] Cignoni P., Montani C., Scopigno R., Dewall: A fast divide & conquer Delaunay triangulation algorithm in Ed // Computer J. 2006. 19, No2, pp 178-181.
[12] T. F. Dupont, Y. Liu. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. // Journal of Computational Physics, vol. 190, no. 1, pp. 311-324, 2003.
[13] http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA _CUDA_Programm ing_Guide_2.0.pdf
[14] A. Roshko. Experiments on the ow past a circular cylinder at very high Reynolds number.// Journal of Fluid Mechanics, 10:345-356, 1961.