**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31100

##### Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

**Authors:**
M. Norouzi,
M. H. Kayhani,
M. R. H. Nobari,
M. Karimi Demneh

**Abstract:**

**Keywords:**
fluid flow,
Viscoelastic,
curved duct,
heat convection,
CEF
model,
square cross section

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1081071

**References:**

[1] W. R., Dean, "Note on the motion of a fluid in a curved pipe," Phil. Mag., Vol. 4, pp. 208-233, May. 1927.

[2] Dean, W. R., "The streamline motion of a fluid in a curved pipe," Phil. Mag., Vol. 5, pp. 673-693, Sep. 1928.

[3] R. H. Thomas, and K., Walters, "On the flow of an elastico-viscous liquid in a curved pipe under a pressure gradient," J. Fluid Mechanic, Vol. 16, pp. 228-242, Feb. 1963.

[4] A. M., Robertson, and S. J., Muller, "Flow of Oldroyd-b fluids in curved pipes of circular and annular cross-section," Int. J. Non-Linenr Mechanics, Vol. 31, No.1, pp. l-20, Aug. 1996.

[5] V. B., Sarin, "Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature," Int J. Biomed Comput, Vol. 32, pp. 135-149, Sep. 1993.

[6] V. B., Sarin, "The steady laminar flow of an elastico-viscous liquid in a curved pipe of varying elliptic cross section," Mathl. Comput. Modelling, Vol. 26, No. 3, pp. 109-121, Sep. 1997.

[7] W. Jitchote, and A. M., Robertson, "Flow of second order fluids in curved pipes," J. Non-Newtonian Fluid Mech., Vol. 90, pp. 91-116, July. 2000.

[8] P. J., Bowen, A. R., Davies, and K., Walters, "On viscoelastic effects in swirling flows," J. Non-Newtonian Fluid Mech., Vol. 38, pp. 113-126, June. 1991.

[9] H. G. Sharma, and A., Prakash, "Flow of a second order fluid in a curved pipe," Indian Journal of Pure and Applied Mathematics, Vol. 8, pp. 546-557, May. 1977.

[10] Y., Iemoto, M., Nagata, and F., Yamamoto, "Steady laminar flow of a power-law fluid in a curved pipe of circular cross-section with varying curvature," J. Non-Newtonian Fluid Mech., Vol. 19, pp. 161-183, May. 1985.

[11] Y., Iemoto, M., Nagata, and F., Yamamoto, "Steady laminar flow of viscoelastic fluid in a curved pipe of circular cross-section with varying curvature," J. Non-Newtonian Fluid Mech., Vol. 22, pp. 101-114, Apr. 1986.

[12] N. Phan-Thien, and R., Zheng, "Viscoelastic flow in a curved duct: a similarity solution for the Oldroyd-b fluid," Journal of Applied Mathematics and Physics, Vol. 41, pp. 766-781, Nov. 1990.

[13] Y., Fan, R. I., Tanner, and N., Phan-Thien, "Fully developed viscous and viscoelastic flows in curved pipes," J. Fluid Mech., Vol. 440, pp. 327- 357, Feb. 2001.

[14] M. K., Zhang, X. R., Shen, J. F., Ma, and B. Z., Zhang, Flow of Oldroyd-B fluid in rotating curved square ducts, Journal of Hydrodynamics, Vol. 19, No. 1, pp. 36-41, Apr. 2007.

[15] L., Helin, L., Thais, and G., Mompean, "Numerical simulation of viscoelastic Dean vortices in a curved duct," J. Non-Newtonian Fluid Mech., Vol. 156, pp. 84-94, July. 2008.

[16] M., Boutabaa, L., Helin, G., Mompean, and L., Thais, "Numerical study of Dean vortices in developing newtonian and viscoelastic flows through a curved duct of square cross-section," J. Non-Newtonian Fluid Mech., Vol. 337, pp, 84-94, Nov. 2009.

[17] M., Zhang, X., Shen, J., Ma, and B., Zhang, "Theoretical analysis of convective heat transfer of Oldroyd-B fluids in a curved pipe," International Journal of Heat and Mass Transfer, Vol. 40, pp. 1-11, July. 2007.

[18] X. R., Shen, M. K., Zhang, J. F., Ma, and B., Zhang, "Flow and heat transfer of Oldroyd-B fluids in a rotating curved pipe," Journal of Hydrodynamics, Vol. 20, pp. 39-46, Jan. 2008.

[19] H. Y. Tsang, and D. F., James, "Reduction of secondary motion in curved tubes by polymer additives," J. Rheol., Vol. 24, pp. 589-601, Oct. 1980.

[20] S., Yanase, N., Goto, and K., Yamamoto, "Dual solutions of the flow through a curved tube," Fluid Dyn. Res., Vol. 5, pp. 191-201, May. 1989.

[21] W. M. Jones and O. H., Davies, "The flow of dilute aqueous solutions of macromolecules in various geometries: III. Curved pipes and porous materials," J. Phys. D: Appl. Phys., Vol. 9, pp. 753-770, Sep. 1976.

[22] R. B. Bird, R. C., Armstrong, and O., Hassager, Dynamics of Polymer Liquids, Second Edition, Canada, John Wiley & Sons, Vol. 2, 1987, ch. 6.

[23] W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, New York, McGraw-Hill, Inc., Third Edition, 1993, ch. 8.

[24] R. B., Bird, and J. M., Wiest, "Constitutive equations for polymeric liquids," Annual Review of Fluid Mechanics, Vol. 27, pp. 169-193, Apr. 1995.

[25] K. A., Hoffmann, S. T., Chiang, Computational Fluid Dynamics for Engineers, First Edition, EES, Texas, 1989, ch. 8.

[26] A. j., Chorin, "A numerical method for solving incompressible viscous flow problems,-- J. Comput., Vol. 2, pp. 12-26, May. 1967.

[27] P., Twonsend, K., Walters, and W. M., Waterhouse, ÔÇÿÔÇÿSecondary flows in pipes of square cross-section and the measurement of the second normal stress difference,-- J. Non-Newtonian Fluid Mech., Vol. 1, pp. 107-123, Sep. 1976.

[28] B. M., Bara, Experimental investigation of developing and fully developed flow in a curved duct of square cross section, PhD Thesis, University of Alberta, 1991, ch. 10.

[29] R. K., Shah and A. L. London, Advanced in Heat Transfer, New York, Academic Press, 1978, ch. 7.