
 

 

  
Abstract—In this paper, fully developed flow and heat transfer of 

viscoelastic materials in curved ducts with square cross section under 
constant heat flux have been investigated. Here, staggered mesh is 
used as computational grids and flow and heat transfer parameters 
have been allocated in this mesh with marker and cell method. 
Numerical solution of governing equations has being performed with 
FTCS finite difference method. Furthermore, Criminale-Eriksen-
Filbey (CEF) constitutive equation has being used as viscoelastic 
model. CEF constitutive equation is a suitable model for studying 
steady shear flow of viscoelastic materials which is able to model 
both effects of the first and second normal stress differences. Here, it 
is shown that the first and second normal stresses differences have 
noticeable and inverse effect on secondary flows intensity and mean 
Nusselt number which is the main novelty of current research. 
 

Keywords—Viscoelastic, fluid flow, heat convection, CEF 
model, curved duct, square cross section.  

I. INTRODUCTION 
NVESTIGATION of flow and heat transfer in curved duct 
is an interesting subject for researchers in the present and 

the past. This type of flow is an important subject in fluid 
mechanics that has different applications in industry and 
medical issues. So far, a lot of researches have been carried 
out in these fields. The most of these researches related to 
Newtonian fluids while, a few number of researches have 
been done about non-Newtonian fluids specially viscoelastic 
fluids. First done research about flow in curved pipes was 
carried out by Dean [1]-[2]. He used perturbation method and 
analyzed Newtonian flow in curved pipe. He found Taylor-
Gortler secondary flows through in his research. This method 
was used with other researchers for studying the flow of 
viscoelastic materials in curved pipes such as Thomas and 
Walters [3], Robertson and Muller [4] and Sarin [5]-[6] about 
Oldroyd-B fluid, Jitchote and Robertson [7], Bowen et al. [8] 
and Sharma and Prakash [9] about the second order fluid and 
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Imeto [10]-[11] about power law and White-Metzner fluid. 
Some of researchers studied this type of flows by using 
numerical methods that can be mentioned the researches of 
Phan-Thien and Zheng [12], Fan et al. [13] and Zhang et al. 
[14] about Oldroyd-B fluid and Helin et al. [15] and Boutabaa 
et al. [16] about PTT fluid. According to these researches, the 
first normal stress difference cause to increasing secondary 
flows intensity and decreasing flow rate. About forced heat 
transfer of non-Newtonian fluids flow in curved ducts, a few 
numbers of researches have been carried out. Zhang et al. [17] 
and Shen et al. [18] studied forced convective heat transfer of 
Oldroyd-B fluid in curved ducts.  

In this paper, fully developed flow and heat transfer of 
viscoelastic materials in curved square ducts under constant 
heat flux have been investigated. Fig. 1 shows geometry of 
this flow. According to this figure, cylindrical coordinate 
system was used. This flow is symmetric toward central radius 
of curvature, so in this article, governing equations have 
solved in half of duct’s cross section. In this research, CEF 
constitutive equation has been used for modeling viscoelastic 
behavior. CEF constitutive equation is a suitable model for 
studying steady shear flow of viscoelastic materials that is 
able to model both effects of the first and second normal stress 
differences.  

According to the best knowledge of authors, only two 
researches [17]-[18] about heat transfer of viscoelastic 
materials in curved duct have been carried out. These 
researches have been done by using Oldroyd-B model.  
Oldroyd-B constitutive equation is not able to model the 
second normal stress difference, but the experimental results 
[19]-[20]-[21] shows considerable effect of negative second 
normal stress difference on this kind of flow. So, current 
paper is the first research that focuses on reverse effect of the 
first and second normal stress differences on force convection 
of viscoelastic fluid flow in curved ducts. Furthermore, in this 
article, effect of elasticity property on secondary flow 
intensity and mean Nusselt number has been studied.   

 
Fig. 1 Duct geometry in current research 
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II. MATERIALS AND METHODS 

A. Governing Equations  
Governing equations in this fluid flow consist of continuity, 

momentum and heat transfer equations: 
 (1-1) 0~. =∇V  
(1-2) τ∇+−∇=∇ρ ~~~.~ PVV  

(1-3) TkTVC p
~~.~ 2∇=∇ρ  

 
In these relations, V~  is velocity vector ).( 1−sm , P~  is static 

pressure )( pa , τ~  is stress tensor )( pa , ρ  is density ).( 3−mkg , 

T~  is temperature )(K , 
pC  is specific heat capacity )..( 11 −− KkgJ  

and k  is heat conduction coefficient )..( 11 −− KmW . 
It should be mentioned that in this article, forced convection 

of incompressible viscoelastic fluid in curved duct has been 
investigated. Therefore, solving the heat transfer equation is 
independent of continuity and momentum equations. So, after 
solving set of equations that includes continuity and 
momentum equations, heat transfer equation will be solved by 
using obtained flow field. Non-dimensional parameters in this 
article are as below: 
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In this relation, ~ in header of each parameter mentions to a 
dimensional parameter. Also, in relation (2), ix%  is component 

of coordinate system, a~  is dimension of duct cross section, R~  
is pitch radius of duct curvature, 0W  is reference velocity, η  
is viscosity, iv%  is velocity component in cylindrical 
coordinate system, (1)γ%  and )2(

~γ  are the first and second order 

shear rate tensor, 
1

~Ψ  and 
2

~Ψ  are the first and second normal 
stress difference coefficients, T~  is temperature, mT~  is mean 
temperature of flow, q ′′  is heat flux at walls, h  is heat 
convection coefficient, δ  is curvature ratio, Re  is Reynolds 
number, Dn  is Dean number and Pr  is Prandtle number. In 
fully developed fluid flow, derivative of all flow parameters 
except static pressure compare to path curvature angle (θ ) is 
zero. Thus, below relation is valid for static pressure [4]: 

(3) 0<=
∂
∂ ttanconsP~

θ  
 

Generally, pressure gradient of fully developed fluid flow in 
curved ducts is defined base on axial pressure gradient: 

(4) GP
R

−=
θ∂

∂~
~
1  

 
In relation (4), G is constant parameter that defines absolute 

of axial pressure drop. For creating non-dimensional 
governing equations, maximum velocity of fully developed 
flow of Newtonian fluid in straight circular pipe with the 
similar amount of pressure gradient, viscosity and hydraulic 
diameter has been used as a reference velocity [4]: 

(5) 
η

=
16

~ 2

0
aGW  

 
Also in Newtonian fully developed fluid flow in straight 

pipe, non-dimensional pressure gradient is constant and is 
obtained from below relation [4]: 

(6) 16−=
∂
∂

s
P

 
In governing equations, reference velocity is defined base 

on equality of pressure gradient in curved duct with pressure 
gradient of Newtonian fluid flow in straight pipe. So, from 
relations (2), (4) and (6) below relation for non-dimensional 
pressure gradient of fully developed flow in curved ducts is 
obtained: 

(7) CRP
−=−=

∂
∂ 16
θ

 
In this relation, C is a positive constant. Therefore, for 

steady fully developed fluid flow in a curved duct; non-
dimensional forms of governing equations are as below [22]:  
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No slip condition is valid for velocity components at walls 

of duct. Due to symmetrical condition of flow; governing 
equations have been solved in half of cross section and 
homogenized Newman condition has been used on symmetry 
boundary. Here, staggered grid has been used so there is no 
require to implement boundary condition for static pressure.   

In this research, fully developed forced heat convection of 
viscoelastic flow has been studied and it is assumed that there 
is a constant heat flux on walls of duct. In fully developed 
heat convection in a curved duct, following relation is valid 
[23]: 
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Where, wT~  is wall temperature and mT~  is mean temperature of 
fluid flow which obtained from following relation [23]: 

∫ θ=
A

m dATv
AU

T ~~~
1~ (10) 

 
In this relation, U~  is bulk velocity of fluid flow. With 

supposing constant heat flux condition, the heat transfer 
equation in fully developed condition is as bellow: 
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In this relation, Γ  is a non-dimensional constant that 

obtained from following relation: 

(12) δ
=Γ

PrRe
4

b

 

 
Where, bRe  is Reynolds number base on bulk velocity. In 

this condition, Nusselt number at walls is obtained from 
following relation: 

(13) 
T

Nu 1
=  

 
Also, the mean Nusselt number is defined: 

(14) ∫=
p

m Nudp
p

Nu 1  

 
Where, p is the non-dimensional form of the duct perimeter. 

Boundary conditions in this equation consist of constant heat 
flux on walls and homogenized Newman boundary condition 
on symmetry boundary. Non-dimensional boundary condition 
at walls is as below: 

(15) 1−=
∂
∂

n
T  

 
In this relation, n is perpendicular direction at walls.  

Also in this research, CEF constitutive equation has been 
used as viscoelastic model [22]: 

(16) { })1()1(2)2(1)1(
~.~~~~

2
1~~ γγΨ+γΨ−γη=τ  

 
The first and second order shear rate tensors for fully 

developed fluid flow is defined as below [22]: 
(17-1) ( ) ( )Τ∇+∇=γ VV ~~~

1
 

(17-2) ( ) ( ) ( ) ( ) ( ) ( ){ }VVV ~~~~~.~~
1112 ∇⋅γ+γ⋅∇−γ∇=γ

Τ  
 

CEF constitutive equation is suitable for modeling steady 
shear flow of viscoelastic materials (viscometric region of 
Pipkin diagram) and it is usual for industrial calculation [24]. 
By using relation (2) in relation (16), non-dimensional form of 
CEF model is obtained: 

 (18) [ ])1()1(2)2(1)1( .
2
1

γγΨ+γΨ−γ=τ

B. Numerical Method 
Flow analysis by quasi unsteady assumption is one of the 

CFD methods for solving steady state problems. In this 
method, the term of time derivatives are not eliminated from 
the governing equations and flow analysis is accomplished 
like unsteady flow until answers converge toward steady state 
solution. Here, time has an iterative rule and it does not have a 
physical worth [25]. Though only solutions steady with 
respect to duct are of interest, initial condition were needed 
because the unsteady form of the conservation equations was 
used. Here, homogenized dirichlet condition is used as the 
initial condition for all of parameters. From the governing 
equations, velocity and temperature quantities have time 
derivative term, and static pressure is only quantity that does 
not have time term. In this research, for creating pressure 
derivative time term, artificial compressibility method is used. 
This method was demonstrated by Chorin [26]. According to 
Chorin [26] theory, pressure time derivative is added to 
continuity equation.                                          

02 =
∂
∂

+
∂
∂

i

i

x
U

c
t
P  (19) 

 
When the flow is being steady, then 0/ =∂∂ tP , and 

continuity equation will be satisfied. In the current research, 
mesh is generated by staggered mesh method [25]. In this 
method of mesh generation, grid is displaced along each cell 
diameter by half of its diameter. Also marker and cell method 
is used for allocating the flow parameter to grids [25]. This 
method brings about possibility of variables coupling and 
improves stability.  

Here, governing equations are formulated explicitly, and 
forward first order approximation is used for time derivation 
and central second order approximation is used for space 
derivation (FTCS). 

  

III. RESULTS AND DISCUSSION 
In the current research, 80×40 square grids is used as 

calculation mesh. For the CEF fluid flow in a curved duct with 
1000Re = , 1.0=δ , 11 =Ψ  and %5/ 12 −=ΨΨ , the mean 

error of axial velocity distribution in 80×40 grid compare to 
120×60 grid is around 0.23%. Therefore, it confirmed that the 
numerical solution of 80×40 grid is grid independent for this 
condition. Hence, the 80×40 grid has been used as the 
reference in this research. Here, we have been validated the 
numerical result of flow field in four ways: 

• With assumption of a too small curvature ratio (large 
radius of curvature), numerical solution converges to 
the flow and heat transfer in a straight duct. For fully 
developed Newtonian fluid flow in a straight duct, 
the mean error of axial velocity's profile obtained 
from numerical results to analytical solution is 0.27% 
at Reynolds number of 25. 

• In creeping flow in a curved duct, the mean error of 
axial velocity obtained from numerical results to 
analytical solution is around 0.49% at 1.0=δ . Here, 
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creeping flow results is obtained with supposing an 
infinitesimal value for Reynolds number. 

• In the CEF fluid flow in a straight duct with the 
rheological properties, 5.01 =Ψ , %10/ 12 −=ΨΨ  and 
in Reynolds number of 30, the mean error of axial 
velocity profile obtained from numerical solution to 
result of Twonsend et al.  [27] is about 1.15%. 

• In the fully developed Newtonian fluid flow in a 
curved duct and Dnb=125, the mean error of axial 
velocity's profile obtained from numerical method to 
experimental result of Bara [28] is nearly 1.07%. 

 
Additionally, to evaluate the results of numerical solution 

of heat transfer equation, the obtained Nusselt numbers have 
been compared to the results of Shah and London [29] which 
focused on the forced heat transfer of Newtonian fluid flow in 
a straight duct with rectangular cross section. They used the 
numerical integration method to calculate the Nusselt number 
for constant heat flux condition. Also, they assumed that the 
duct's surface temperature is constant, too. In this research, for 
validating the heat transfer results, we assumed that the duct's 
surface temperature is constant. For converging the numerical 
results of heat transfer equation to temperature distribution of 
flow in a straight duct, we assumed that the curvature ratio is 
infinitesimal (very large radius of curvature). Table I present 
Nusselt numbers which obtained in current research and Shah 
and London's [29] research at different value of aspect ratio. 
According to this table, the current research's results have a 
good agreement with Shah and London's [29] results.  

 
TABLE I 

NUSSENT NUMBER AT DIFFERENT VALUE OF ASPECT RATIO IN CURRENT 
RESEARCH AND SHAH AND LONDON'S [29] RESEARCH 

Aspect Ratio Shah and London's  [29]  Current research 

1.0 3.61 3.6154 
1.43 3.73 3.7369 
2.0 4.12 4.1274 
3.0 4.79 4.7983 
4.0 5.33 5.3402 

 
It is important to knowing that the assumption of constant 

temperature at walls for constant heat flux situation is an 
approximation for calculation of Nusselt number. It will be 
mentioned that this assumption is just used in this section to 
validate the accuracy of numerical results and is not applicable 
in other results of this paper. At the continuance, the effect of 
centrifugal force on the flow is studied. Here, the Newtonian 
fluid flow is used to study the effect of centrifugal force that 
there are no normal stress differences. In this flow, the 
presence of centrifugal force due to curvature will lead to 
significant radial pressure gradient in flow core region. 
However, in the proximity of curved duct's inner and outer 
walls, the axial velocity and as a result the centrifugal force 
will approach toward zero. In this situation, for preserving the 
balance, momentum mechanisms act and Taylor-Gortler 
secondary flows will be appeared. Fig. 2 shows the secondary 
flows in Dnb =125. Also according to the figure, the axial 
velocity distribution's tendency is toward the outer wall of the 
duct due to the centrifugal force. Generally, in Newtonian 

fluid flow in curved ducts with square cross section, Taylor's 
secondary flows will be appeared as a one pair of vortices at 
Dean number less than 125. Though, it will be changed to two 
pair of vortices for larger Dean number, gradually. This 
phenomenon is due to the high radial pressure gradient and 
substantial tendency of the main flow toward outer wall which 
lead the flow to be changed. Fig. 2 shows the secondary flows 
in Dnb=137, too. In this situation, as it has been seen in Bara 
[28] research experimentally, the presence of two pair of 
vortices is obvious. Also, axial velocity distribution and 
pressure have been changed which gain the maximum velocity 
in two concurrent points. Referring to the figure, temperature's 
distribution has been shown non-dimensional. In Dnb=137 
fluid's temperature in inner wall's proximity is higher than of 
Dnb=125. For Dnb=125 and Dnb=137, the mean Nuselt 
number will be 9.48 and 16.16, respectively. The phenomenon 
is due to changing the secondary flows from two vortices to 
four vortices rather than increasing of the axial velocity and 
Reynolds number, which have been resulted in the increasing 
flow mixing and also increasing the heat transfer. 

 
        137=bDn             125=bDn    

Fig. 2 Streamlines of secondary flows, main velocity and 
temperature distribution for Newtonian fluid flow at different 

Dean Numbers 
 
Fig. 3 illustrates the streamlines of secondary flows and 

temperature distribution at Dnb=125 for different values of 
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first and second normal stress differences. The above 
mentioned situation has been chosen because of the secondary 
flows form is changed in the vicinity of Dnb=125, (see Fig. 2). 
According to the Figure, while keeping the Dnb=125 and 
providing the first normal stress difference, secondary flows 
intensity will be increased and the number of vortices is 
changed from one pair to two pairs. Furthermore, while 
providing the negative second normal stress difference, 
secondary flows intensity will be decreased and the vortices 
that located in upper side of cross section is weaken.  
According to this Figure, the upper secondary flows is 
disappeared in %10/ 12 −=ΨΨ . It is important to knowing that 
the second normal stress difference in the most of viscoelastic 
materials is negative. 

Summarily, the effect of first and second normal stress 
difference on this flow is completely opposite. The first 
normal stress difference leads to increase and negative second 
normal stress difference decrease the secondary flows 
intensity. 

Fig. 3 illustrates the non-dimensional temperature's 
distribution which is influenced by secondary flow's intensity 
and shape, too. For CEF fluid with rheological properties, 

6.01 =Ψ  and 0.0/ 12 =ΨΨ , there are two pair of vortices with 
high intensity. So, the flow mixing is high and the area with 
high temperature is larger than other cases. In this condition, 
the mean Nusselt number is 17.04 and heat transfer comparing 
to Newtonian fluid with Nusselt number of 9.48, is almost 1.8 
times greater. The increasing of negative second normal stress 
difference leads to decreasing in secondary flows intensity and 
Nusselt number in CEF fluid flow which the mean Nusselt 
number decreases to 11.00 and 10.03 for the %7/ 12 −=ΨΨ  
and %10/ 12 −=ΨΨ , respectively. According to the figure, 
temperature's distribution and secondary flows' shape in CEF 
flow with rheological properties 6.01 =Ψ  and %10/ 12 −=ΨΨ  is 
too similar to Newtonian fluid.  

Using elastic mumber to consider the effect of first normal 
stress difference in flow of viscoelastic materials in curved 
duct, is usual. For CEF flow, elastic number is defined by 
dividing the non-dimensional first normal stress difference to 
Reynolds number: 

2
11

~

Re a
En

ρ
Ψ

=
Ψ

=
 

(20) 

 
In fact, the elastic number is the effects of elasticity on the 
inertia of flow and according to equation (20) for a specific 
geometry is a function of fluid properties only.  

In the following, the mechanism which heat transfer is 
influenced by rheological properties is considered. In Fig. 4, 
hoop stress distribution )( ϑθτ  and stress parameters  

rrτ  and 

rzτ  are illustrated. Here, the numerical simulation for CEF 
fluid flow with properties 0075.0=En , 100Re =  and 15.0=δ  
are implemented. It is noticeable that these stress components 
are insignificant and in order of  ε  in fully developed 
Newtonian fluid flow in a curved duct but these stresses are 
appeared in CEF fluid flow. According to the figure, when the 
effect of second normal stress difference is zero ( 0.0/ 12 =ΨΨ ), 

the effect of first normal stress difference causes the strong 
hoop stress )( ϑθτ . In the core area, the radial pressure gradient 
is balanced with the hoop stress and centrifugal force. 

  
Newtonian Fluid 

  

CEF Fluid, ,6.01 =Ψ  0.0/ 12 =ΨΨ  

  

CEF Fluid, ,6.01 =Ψ  %7/ 12 −=ΨΨ  

  

CEF Fluid, ,6.01 =Ψ  %10/ 12 −=ΨΨ  

  

Fig. 3 Streamlines of secondary flows and  
temperature distributions of Newtonian and CEF fluid 

at 125=bDn  and different value of rheological properties   

 
Due to small value of centrifugal force and large value of 

hoop stress near the outer wall, the imbalanced is appeared in 
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this region. For keeping the balance, momentum mechanism 
acts and produces secondary flows at the direction of Taylor-
Gortler vortices. Therefore, the mixing of the fluids and heat 
transfer of flows is increase. On the other hand, producing 
negative second normal stress difference leads to decreasing 
hoop stress and changing the distribution of stress parameters 

rrτ  and rzτ  in the flow which both factors play a substantial 
role in secondary flows intensity's decrease and consequently 
decreasing in heat transfer.  

In this reserach, Smax is used as the ratio of secondary flows' 
maximum velocity to the main flow's mean velocity, to 
consider the secondary flows intensity. In Fig. 5, the effect of 
first normal stress difference in terms of elastic number on 
secondary flow's intensity and mean Nusselt number is shown. 
Here, we assume that the second normal stress difference 
equal to zero. Regarding to the figure, increasing the Reynolds 
number leads to raise the secondary flows intensity and mean 
Nusselt number for all kind of fluids. Moreover, an increase in 
elastic number (first normal stress difference) brings higher 
secondary flows intensity and higher Nusselt number.  

 
   ,CEF  %10/ 12 −=ΨΨ       ,CEF  0.0/ 12 =ΨΨ  

Fig. 4 Distribution of stress components  which are effective in 
radial pressure gradient at 0075.0=En  ، 100Re =  and 15.0=δ  

 
The effect of elastic number on secondary flows intensity 

and mean Nusselt number is much more for large Reynolds 
number. This subject is related to the second order 

dependence of elastic stress to shear rate. In Fig. 6, the effect 
of second normal stress difference on secondary flows 
intensity (Smax) and mean Nusselt number has been presented. 
As it shows, an increase in second normal stress difference 
leads to a decrease in secondary flows intensity and mean 
Nusselt number; as for Reynolds number more than 120, 
secondary flows intensity and Nusselt number is even less 
than Newtonian fluid flow. The significant effect of second 
normal stress difference on secondary flows intensity 
decrement in viscoelastic fluids flow in curved duct is a 
remarkable phenomenon which has been proven in 
experimental observations [19]-[20]-[21]. 
 

 

 
Fig. 5 Effect of the first normal stress difference on secondary 

flows intensity and mean Nusselt number at 15.0=δ  and 0.02 =Ψ  
 

 

 
Fig. 6 Effect of the second normal stress difference on secondary 
flows intensity and mean Nusselt number at 15.0=δ  and 0075.0=En  
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IV. CONCLUSION 
Inverse effects of the first and second normal stress 

difference on flow and heat transfer of viscoelastic materials 
in curved duct with square cross section have being proven in 
this research and it has been shown that: 

• On viscoelastic fluids flow in curved duct, with a rise 
in first normal stress difference, intensity of Taylor-
Gortler vortices and mean Nusselt number are 
increased. The effect of negative second normal 
stress difference on flow and heat transfer is on the 
contrary of first normal stress difference. For 
viscoelastic fluids flow with large negative second 
normal stress difference, mean Nusselt number may 
be less than Newtonian fluid flow.  

• The mechanism of first normal stress difference's on 
the flow is producing a large axial normal stress near 
the outer wall which leads to amplify the Taylor-
Gortler vortices. On the other hand, negative second 
normal stress difference results a decrement in axial 
normal stress and amplifying the effect of stress 
components 

rrτ  and rzτ , which both factors reduce 
the radial pressure gradient and both of consequently 
the secondary flows intensity and Nusselt number. 
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