Search results for: Iron oxide
392 Hexavalent Chromium Removal from Aqueous Solutions by Adsorption onto Synthetic Nano Size ZeroValent Iron (nZVI)
Authors: A.R. Rahmani, M.T. Samadi, R. Noroozi
Abstract:
The present work was conducted for the synthesis of nano size zerovalent iron (nZVI) and hexavalent chromium (Cr(VI)) removal as a highly toxic pollutant by using this nanoparticles. Batch experiments were performed to investigate the effects of Cr(VI), nZVI concentration, pH of solution and contact time variation on the removal efficiency of Cr(VI). nZVI was synthesized by reduction of ferric chloride using sodium borohydrid. SEM and XRD examinations applied for determination of particle size and characterization of produced nanoparticles. The results showed that the removal efficiency decreased with Cr(VI) concentration and pH of solution and increased with adsorbent dosage and contact time. The Langmuir and Freundlich isotherm models were used for the adsorption equilibrium data and the Langmuir isotherm model was well fitted. Nanoparticle ZVI presented an outstanding ability to remove Cr(VI) due to high surface area, low particle size and high inherent activity.Keywords: Adsorption, aqueous solution, Chromium, nZVI, removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565391 Removal of Hydrogen Sulphide from Air by Means of Fibrous Ion Exchangers
Authors: H. Wasag
Abstract:
The removal of hydrogen sulphide is required for reasons of health, odour problems, safety and corrosivity problems. The means of removing hydrogen sulphide mainly depend on its concentration and kind of medium to be purified. The paper deals with a method of hydrogen sulphide removal from the air by its catalytic oxidation to elemental sulphur with the use of Fe-EDTA complex. The possibility of obtaining fibrous filtering materials able to remove small concentrations of H2S from the air were described. The base of these materials is fibrous ion exchanger with Fe(III)- EDTA complex immobilized on their functional groups. The complex of trivalent iron converts hydrogen sulphide to elemental sulphur. Bivalent iron formed in the reaction is oxidized by the atmospheric oxygen, so complex of trivalent iron is continuously regenerated and the overall process can be accounted as pseudocatalytic. In the present paper properties of several fibrous catalysts based on ion exchangers with different chemical nature (weak acid,weak base and strong base) were described. It was shown that the main parameters affecting the process of catalytic oxidation are:concentration of hydrogen sulphide in the air, relative humidity of the purified air, the process time and the content of Fe-EDTA complex in the fibres. The data presented show that the filtering layers with anion exchange package are much more active in the catalytic processes of hydrogen sulphide removal than cation exchanger and inert materials. In the addition to the nature of the fibres relative air humidity is a critical factor determining efficiency of the material in the air purification from H2S. It was proved that the most promising carrier of the Fe-EDTA catalyst for hydrogen sulphide oxidation are Fiban A-6 and Fiban AK-22 fibres.
Keywords: hydrogen sulphide, catalytic oxidation, odour control, ion exchange, fibrous ion exchangers, air deodorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499390 Reuse of Huge Industrial Areas
Authors: Martina Perinkova, Lenka Kolarcikova, Marketa Twrda
Abstract:
Brownfields are one of the most important problems that must be solved by today's cities. The topic of this article is description of developing a comprehensive transformation of postindustrial area of the former iron factory national cultural heritage lower Vítkovice. City of Ostrava used to be industrial superpower of the Czechoslovak Republic, especially in the area of coal mining and iron production, after declining industrial production and mining in the 80s left many unused areas of former factories generally brownfields and backfields. Since the late 90s we are observing how the city officials or private entities seeking to remedy this situation. Regeneration of brownfields is a very expensive and long-term process. The area is now rebuilt for tourists and residents of the city in the entertainment, cultural, and social center. It was necessary do the reconstruction of the industrial monuments. Equally important was the construction of new buildings, which helped reusing of the entire complex. This is a unique example of transformation of technical monuments and completion of necessary new objects, so that the area could start working again and reintegrate back into the urban system.Keywords: Brownfields, conversion, historical and industrial buildings, reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581389 Inadequacy of Macronutrient and Micronutrient Intake in Children Aged 12-23 Months Old: An Urban Study in Central Jakarta, Indonesia
Authors: Dewi Fatmaningrum, Ade Wiradnyani
Abstract:
Optimal feeding, including optimal micronutrient intake, becomes one of the ways to overcome the long-term consequences of undernutrition. Macronutrient and micronutrient intake were important to a rapid growth and development of young children. The study objective was to assess macro and micronutrient intake and its adequacy in children aged 12-23 months. This survey was a cross-sectional study, involving 83 caregivers with children aged 12-23 months old in Senen Sub-district, Central Jakarta selected through simple random sampling. Data on nutrient intake was obtained through interview using single 24-hour recall. Repeated 24- hour recall to sub-sample was done to estimate the proportion of nutrient inadequacy. The highest prevalence of nutrient inadequacy was iron (52.4%), followed by vitamin C (30.9%) and zinc (28.8%). Almost 12% children had inadequate energy intake. More than half of children (62.6%) were anemic (25.3% were severely anemic). Micronutrient inadequacy, especially iron, was more problematic than macronutrient inadequacy in the study area.
Keywords: Micronutrient, macronutrient, children under five, urban setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604388 Protective Effect of Thymoquinone against Nephrotoxicity Induced by Cadmium in Rats
Authors: Amr A. Fouad, Hamed A. Alwadaani, Iyad Jresat
Abstract:
The present study investigated the protective effect of thymoquinone (TQ), against cadmium-induced kidney injury in rats. Cadmium chloride (1.2 mg Cd/kg/day, s.c.), was given for nine weeks. TQ treatment (40 mg/kg/day, p.o.) started on the same day of cadmium administration and continued for nine weeks. TQ significantly decreased serum creatinine, renal malondialdehyde and nitric oxide, and significantly increased renal reduced glutathione in rats received cadmium. Histopathological examination showed that TQ markedly minimized renal tissue damage induced by cadmium. Immunohistochemical analysis revealed that TQ markedly decreased the cadmium-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, and caspase-3 in renal tissue. It was concluded that TQ significantly protected against cadmium nephrotoxicity in rats, through its antioxidant, antiinflammatory, and antiapoptotic actions.Keywords: Thymoquinone, cadmium, kidney, rats.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757387 A Study of Calcination and Carbonation of Cockle Shell
Authors: N.A. Rashidi, M. Mohamed, S.Yusup
Abstract:
Calcium oxide (CaO) as carbon dioxide (CO2) adsorbent at the elevated temperature has been very well-received thus far. The CaO can be synthesized from natural calcium carbonate (CaCO3) sources through the reversible calcination-carbonation process. In the study, cockle shell has been selected as CaO precursors. The objectives of the study are to investigate the performance of calcination and carbonation with respect to different temperature, heating rate, particle size and the duration time. Overall, better performance is shown at the calcination temperature of 850oC for 40 minutes, heating rate of 20oC/min, particle size of < 0.125mm and the carbonation temperature is at 650oC. The synthesized materials have been characterized by nitrogen physisorption and surface morphology analysis. The effectiveness of the synthesized cockle shell in capturing CO2 (0.72 kg CO2/kg adsorbent) which is comparable to the commercialized adsorbent (0.60 kg CO2/kg adsorbent) makes them as the most promising materials for CO2 capture.Keywords: Calcination, Calcium oxide, Carbonation, Cockle shell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3592386 Protective Effect of Thymoquinone against Arsenic-Induced Testicular Toxicity in Rats
Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat
Abstract:
The protective effect of thymoquinone (TQ) was investigated in rats exposed to testicular injury induced by sodium arsenite (10mg/kg/day, orally, for two days). TQ treatment (10mg/kg/day, intraperitoneal injection) was applied for five days, starting three day before arsenic administration. TQ significantly attenuated the arsenic-induced decreases of serum testosterone, and testicular reduced glutathione level, and significantly decreased the elevations of testicular malondialdehyde and nitric oxide levels resulted from arsenic administration. Also, TQ ameliorated the arsenic-induced testicular tissue injury observed by histopathological examination. In addition, TQ decreased the arsenic-induced expression of inducible nitric oxide synthase and caspase-3 in testicular tissue. It was concluded that TQ may represent a potential candidate to protect against arsenic-induced testicular injury.
Keywords: Thymoquinone, arsenic, testes, rats.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811385 Synthesis and Characterization of Cu-NanoWire Arrays by EMD Using ITO-Template
Authors: Jyoti Narayan, S. Choudhary
Abstract:
Nanowire arrays of copper with uniform diameters have been synthesized by potentiostatic electrochemical metal deposition (EMD) of copper sulphate and potassium chloride solution within the nano-channels of porous Indium-Tin Oxide (ITO), also known as Tin doped Indium Oxide templates. The nanowires developed were fairly continuous with diameters ranging from 110-140 nm along the entire length. Single as well as poly-crystalline copper wires have been prepared by application of appropriate potential during the EMD process. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), small angle electron diffraction (SAED) and atomic force microscopy (AFM) were used to characterize the synthesized nano wires at room temperature. The electrochemical response of synthesized products was evaluated by cyclic voltammetry while surface energy analysis was carried out using a Goniometer.Keywords: Electro-deposition, Metallic nano-wires, Nanomaterials, Template synthesis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2855384 Produced Gas Conversion of Microwave Carbon Receptor Reforming
Authors: Young Nam Chun, Mun Sup Lim
Abstract:
Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used.
Keywords: Microwave, gas reforming, greenhouse gas, microwave receptor, catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050383 Various Modifications of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide
Authors: W. J. Stępniowski, W. Florkiewicz, M. Norek, M. Michalska-Domańska, E. Kościuczyk, T. Czujko
Abstract:
In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology.
Keywords: Anodic aluminum oxide, anodization, barrier layer thinning, nanopores.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634382 Decolorization and COD Removal of Palm Oil Mill Wastewater by Electrocoagulation
Authors: K. Sontaya, B. Pitiyont, V. Punsuvon
Abstract:
The objective of this study is to investigate the performance of the electrocoagulation process for color and COD removal in palm oil wastewater using a 10 L batch reactor. Iron was used as electrodes and the distance between electrodes was 2 cm. The effects of operating parameters: current voltage (6, 12 and 18 volt), reaction time (5, 15, 30, 45 and 60 min) and initial pH (4 and 9) of treatment efficiency were examine. The result showed that decolorization and COD removal efficiency increased with the increase in current voltage and reaction time. The proper condition for decolorization achieved at initial pH 4 and 9 were current voltage of 12 volt, reaction time 30 min. The decolorization efficiency reached 90.4% and 88.9%, respectively. COD removal was achiveved at current voltage 12 volt, reaction time 15 min. COD removal efficiency was 89.2 % and 83.0%, respectively. From the results, to show electrocoagulation process can treat palm oil mill wastewater in both acidic and basic condition at high efficiency for color and COD removal. Consequently, electrocoagulation process can be used or applied as a post-treatment step to improve the quality of the final discharge in term of color and residual COD removal.
Keywords: COD removal, decolorizaton, electrocoagulation, iron electrode, palm oil mill wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3179381 Developing Manufacturing Process for the Graphene Sensors
Authors: Abdullah Faqihi, John Hedley
Abstract:
Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666380 Deicing and Corrosive Performances of Calcium Acetate Deicer Made from Bamboo-Vinegar
Authors: Xinyuan Jiang, Genan Li, Zhiping Wu
Abstract:
Calcium magnesium acetate (CMA) is environmentally benign deicing chemicals that can replace sodium chloride that is widely used on roads and highways at present for snow and ice control to provide safe driving conditions during winter. The price of CMA from petroleum-derived acetic acid is quite expensive. The bamboo vinegar is the by-product from bamboo charcoal production. The bamboo vinegar was used to prepare calcium acetate as raw materials, and its deicing and corrosive performances were studied in this paper. The results show that the freezing temperature of calcium acetate is lower than that of sodium chloride when they have same molar concentration, the deicing performance of calcium acetate is better than that of sodium chloride when they have same moles, while the deicing performance of sodium chloride is better than that of calcium acetate. The corrosion of sodium chloride on iron-nail and steel-nail is larger than that of calcium acetate whether they have same mass concentration or same molar concentration, and the corrosion of sodium chloride and calcium acetate on iron-nail is larger than that on steel-nail, and calcium acetate almost hasn't corrosion on steel-nail.Keywords: bamboo vinegar, calcium acetate, corrosion, deicer, deicing performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559379 Effect of Gamma Irradiation on the Microhardness of Polymer Blends of Poly (Ethyl Methacrylate)(Pema) and Poly (Ethylene Oxide) (Peo)
Authors: Sanjay Kumar Awasthi, Sunil Kumar Bajpai, Surendra Kumar Pandey, Ajay Utiye
Abstract:
The effect of gamma irradiation on micro-hardness of polymer blends of poly (ethyl methacrylate)(PEMA) and poly (ethylene oxide) (PEO) has been investigated to detect the radiation induced crosslinking. The blend system comprises a noncrystallizable polymer, PEMA and a crystallizable polymer, PEO. On irradiation, the overall hardness of the blend specimens for different dose levels infers occurrence of a crosslinking process. The radiation-induced crosslinking was greater for blends having lower concentration of PEO. However, increase in radiation dose causes softening of blend system due to radiation induced scissioning of the chains
Keywords: Microhardness, Radiation induced crosslinking, Solution cast technique, Vicker's hardness number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582378 The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge
Authors: E. Al-Essa, R. Bello-Mendoza, D. G. Wareham
Abstract:
Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.
Keywords: Anaerobic digestion, iron oxide (Fe3O4), methanogenesis, nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789377 Parametric Analysis on Hydrogen Production using Mixtures of Pure Cellulosic and Calcium Oxide
Authors: N.A. Rashidi, S. Yusup, M.M. Ahmad
Abstract:
As the fossil fuels kept on depleting, intense research in developing hydrogen (H2) as the alternative fuel has been done to cater our tremendous demand for fuel. The potential of H2 as the ultimate clean fuel differs with the fossil fuel that releases significant amounts of carbon dioxide (CO2) into the surrounding and leads to the global warming. The experimental work was carried out to study the production of H2 from palm kernel shell steam gasification at different variables such as heating rate, steam to biomass ratio and adsorbent to biomass ratio. Maximum H2 composition which is 61% (volume basis) was obtained at heating rate of 100oCmin-1, steam/biomass of 2:1 ratio, and adsorbent/biomass of 1:1 ratio. The commercial adsorbent had been modified by utilizing the alcoholwater mixture. Characteristics of both adsorbents were investigated and it is concluded that flowability and floodability of modified CaO is significantly improved.
Keywords: Biomass gasification, Calcium oxide, Carbon dioxide capture, Sorbent flowability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845376 Generation of Highly Ordered Porous Antimony-Doped Tin Oxide Film by A Simple Coating Method with Colloidal Template
Authors: Asep Bayu Dani Nandiyanto, Asep Suhendi, Yutaka Kisakibaru, Takashi Ogi, Kikuo Okuyama
Abstract:
An ordered porous antimony-doped tin oxide (ATO) film was successfully prepared using a simple coating process with colloidal templates. The facile production was effective when a combination of 16-nm ATO (as a model of an inorganic nanoparticle) and polystyrene (PS) spheres (as a model of the template) weresimply coated to produce a composite ATO/PS film. Heat treatment was then used to remove the PS and produce the porous film. The porous film with a spherical pore shape and a highly ordered porous structure could be obtained. A potential way for the control of pore size could be also achieved by changing initial template size. The theoretical explanation and mechanism of porous formation were also added, which would be important for the scaling-up prediction and estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571375 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor
Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung
Abstract:
The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V·s at 250°C.
Keywords: Single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, Thin-film transistor (TFT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789374 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field
Authors: Anurag Gaur, Nidhi, Shashi Sharma
Abstract:
Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834373 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.
Keywords: Structure analysis, aluminum piston, MgZrO3, YTZ, mullite and alumina.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785372 Effects of Formic Acid on the Chemical State and Morphology of As-synthesized and Annealed ZnO Films
Authors: Chueh-Jung Huang, Chia-Hung Li, Hsueh-Lung Wang, Tsun-Nan Lin
Abstract:
Zinc oxide thin films with various microstructures were grown on substrates by using HCOOH-sols. The reaction mechanism of the sol system was investigated by performing an XPS analysis of as-synthesized films, due to the products of hydrolysis and condensation in the sol system contributing to the chemical state of the as-synthesized films. The chemical structures of the assynthesized films related to the microstructures of the final annealed films were also studied. The results of the Zn 2p3/2, C 1s and O1s XPS patterns indicate that the hydrolysis reaction in the sol system is strongly influenced by the HCOOH agent. The results of XRD and FE-SEM demonstrated the microstructures of the annealed films are related to the content of hydrolyzed zinc hydrate (Zn-OH) species present, and that content of the Zn-OH species in the sol system increases the HCOOH adding, and these Zn-OH species existing in the sol phase are responsible for large ZnO crystallites in the final annealed films.Keywords: zinc oxide, hydrolysis catalyst, zinc acetate source, formic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660371 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment
Authors: C. Lanzerstorfer
Abstract:
The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.Keywords: Air classification, converter dust, recycling, zinc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220370 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.
Keywords: Bottleneck, Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956369 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method
Authors: C. C. Chen, C. M. Chu, C. J. Wang, C. Y. Chen, K. J. Huang
Abstract:
Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.
Keywords: Cesiumiodide, AAO, scintillator, crystal, X-ray.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064368 Tensile Properties of Aluminum Silicon Nickel Iron Vanadium High Entropy Alloys
Authors: Sefiu A. Bello, Nasirudeen K. Raji, Jeleel A. Adebisi, Sadiq A. Raji
Abstract:
Pure metals are not used in most cases for structural applications because of their limited properties. Presently, high entropy alloys (HEAs) are emerging by mixing comparative proportions of metals with the aim of maximizing the entropy leading to enhancement in structural and mechanical properties. Aluminum Silicon Nickel Iron Vanadium (AlSiNiFeV) alloy was developed using stir cast technique and analysed. Results obtained show that the alloy grade G0 contains 44 percentage by weight (wt%) Al, 32 wt% Si, 9 wt% Ni, 4 wt% Fe, 3 wt% V and 8 wt% for minor elements with tensile strength and elongation of 106 Nmm-2 and 2.68%, respectively. X-ray diffraction confirmed intermetallic compounds having hexagonal closed packed (HCP), orthorhombic and cubic structures in cubic dendritic matrix. This affirmed transformation from the cubic structures of elemental constituents of the HEAs to the precipitated structures of the intermetallic compounds. A maximum tensile strength of 188 Nmm-2 with 4% elongation was noticed at 10wt% of silica addition to the G0. An increase in tensile strength with an increment in silica content could be attributed to different phases and crystal geometries characterizing each HEA.
Keywords: High entropy alloys, phases, model, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746367 Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes
Authors: Syed Bahari Ramadzan Syed Adnan, Nor Sabirin Mohamed, Norwati K.A
Abstract:
In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.Keywords: Conductivity, LISICON, Li4SiO4, Solid electrolyte, Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320366 Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Anthraquinone Dyes
Authors: Akshaya Kumar Verma, Puspendu Bhunia*, Rajesh Roshan Dash
Abstract:
Magnesium chloride, though cost wise roughly same as of ferrous sulphate, is less commonly used coagulant in comparison to the ferrous sulphate for the treatment of wastewater. The present study was conducted to investigate the comparative effectiveness of ferrous sulphate (FeSO4.7H2O) as iron based salt and magnesium chloride (MgCl2) as magnesium based salt in terms of decolorization and chemical oxygen demand (COD) reduction efficiency of textile wastewater. The coagulants were evaluated for synthetic textile wastewater containing two diazo dyes namely Reactive Black 5 (RB5) and Congo Red (CR) and one anthraquinone dye as Disperse Blue 3 (DB3), in seven possible equi-ratio combinations. Other chemical constituents that are normally released from different textile processing units were also added to replicate a practical scenario. From this study, MgCl2/Lime was found to be a superior coagulant system as compared to FeSO4.7H2O/Lime, FeSO4.7H2O/NaOH and MgCl2/NaOH.
Keywords: Coagulation, Color removal, Magnesium chloride, Textile wastewater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431365 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures
Authors: A. C. Sarmah
Abstract:
The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.
Keywords: Debye length, Depletion width, flat band capacitance, impurity concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569364 Investigation of Silane Modified Ceramic Surface of Porous Mullite Ceramics
Authors: I. Markovska, F. Yovkova, G. Minov, D. Rusev, L. Lyubchev
Abstract:
The present research focus on the processing of mullite-based ceramics from oil refinery industrial wastes and byproducts of agricultural industry and on the investigating of silane modified surface of ceramics. Two waste products were used as initial material – waste aluminum oxide and waste rice husk. The burning - out additives used were waste rise husk. It is known that the oxide ceramics surface is hydrophilic due to the presence of – OH groups in it. The nature of ceramic surface regarding permeation of water and hydrocarbons can be changed by further treatment with silanes. The samples were studied mainly by X-ray analysis, FT-IR absorbance measurements and microscopic analysis. The X-ray analyses showed the phase composition depends on the firing temperature and on the purity of the starting alumina. Two kind of silanes were used for the transformation of surface from hydrophilic to hydrophobic – trimethoxymethylsilane (TMMS) and trimethylclorsilane (TMCS).
Keywords: Porous mullite ceramics, waste materials, trimethoxymethylsilane, trimethylclorsilane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483363 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969