WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002857,
	  title     = {Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field},
	  author    = {Anurag Gaur and  Nidhi and  Shashi Sharma},
	  country	= {},
	  institution	= {},
	  abstract     = {Targeted drug delivery is a method of delivering
medication to a patient in a manner that increases the concentration
of the medication in some parts of the body relative to others.
Targeted drug delivery seeks to concentrate the medication in the
tissues of interest while reducing the relative concentration of the
medication in the remaining tissues. This improves efficacy of the
while reducing side effects. In the present work, we investigate the
effect of magnetic field, flow rate and particle concentration on the
capturing of magnetic particles transported in a stent implanted
fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4)
nanoparticles were synthesized via co-precipitation method. The
synthesized Fe3O4 nanoparticles were added in the de-ionized (DI)
water to prepare the Fe3O4 magnetic particle suspended fluid. This
fluid is transported in a cylindrical tube of diameter 8 mm with help
of a peristaltic pump at different flow rate (25-40 ml/min). A
ferromagnetic coil of SS 430 has been implanted inside the
cylindrical tube to enhance the capturing of magnetic nanoparticles
under magnetic field. The capturing of magnetic nanoparticles was
observed at different magnetic magnetic field, flow rate and particle
concentration. It is observed that capture efficiency increases from
47-67% at magnetic field 2-5kG, respectively at particle
concentration 0.6mg/ml and at flow rate 30 ml/min. However, the
capture efficiency decreases from 65 to 44% by increasing the flow
rate from 25 to 40 ml/min, respectively. Furthermore, it is observed
that capture efficiency increases from 51 to 67% by increasing the
particle concentration from 0.3 to 0.6 mg/ml, respectively.},
	    journal   = {International Journal of Physical and Mathematical Sciences},
	  volume    = {9},
	  number    = {9},
	  year      = {2015},
	  pages     = {583 - 586},
	  ee        = {https://publications.waset.org/pdf/10002857},
	  url   	= {https://publications.waset.org/vol/105},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 105, 2015},
	}