Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field
Authors: Anurag Gaur, Nidhi, Shashi Sharma
Abstract:
Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109936
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837References:
[1] V. P. Torchilin, "Drug targeting." Eur J. Pharm Sci, Vol. 11, 2000, pp. 81.
[2] D. J. A Crommelin, G. Scherphof, G. Storm, "Active targeting with particulate carrier systems in the blood compartment." Adv drug deliver rev, Vol. 17, 1995, pp. 49.
[3] M. O. Avilés, A. D. Ebner, J. A. Ritter "In vitro study of magnetic particle seeding for implants assisted-magnetic drug targeting." J. Magn. Magn.Mater., Vol. 320, 2008, pp. 2640.
[4] M. O. Avilés, A. D. Ebner, J. A. Ritter "In vitro study of magnetic particle seeding for implant-assisted-magnetic drug targeting: Seed and magnetic drug carrier particle capture." J. Magn. Magn.Mater.,Vol. 321, 2009, pp. 1586.
[5] J. A. Ritter, J. A. D. Ebner, K. D. Daniel, K. Stewart"Application of high gradient magnetic separation principles to magnetic drug targeting" J. Magn. Magn.Mater., Vol. 280, 2004, pp. 184.
[6] A. D. Grief, G. Richardson "Mathematical modelling of magnetically targeted drug delivery" J. Magn. Magn.Mater., Vol. 293, 2005, pp. 455.
[7] M. Babincová, D. Leszczynska, P. Sourivong, P. Babinec, "Lysis of photosensitized erythrocytes in an alternating magnetic field"J. magn.Magn.mater., Vol. 225, 2001, pp. 194.
[8] G. H. Iacob, O. Rotariu, H. Chiriac "A possibility for local targeting of magnetic carriers" J. Optoelectron. Adv. M, Vol. 6, 2004, pp. 713.
[9] G. Iacob,O. Rotariu, N. J. C Strachan, U.O. Hafeli "Magnetizable needles and wires-modeling an efficient way to target magnetic microspheres in vivo." Biorheology, Vol. 41, 2004, pp. 599.
[10] B. B. Yellen, Z. G. Forbes, D. S. Halverson, G. Fridman, K. A. Barbee, M. Chorny, G. Friedman"Targeted drug delivery to magnetic implants for therapeutic applications." J. magn.Magn.mater., Vol. 293, 2005, pp. 647.
[11] O. Rotariu, N. J. C. Strachan "Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment." J. Magn. Magn. Mater, Vol. 293, 2005, pp. 639.
[12] H. Chen, A. D. Ebner, A. J. Rosengart, M. D. Kaminski, J. A. Ritter, "Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 1. Parametric study with single wire correlation." J. magn.Magn.Mater. Vol. 284, 2004, pp. 181.
[13] H. Chen, A. D. Ebner, A. J. Rosengart, M. D. Kaminski, J. A. Ritter "Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: parametric study with multi-wire twodimensional model." J. magn.Magn.Mater., Vol. 293, 2005, pp. 616.
[14] M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, J. A Ritter, "Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles." J. magn.Magn.Mater., Vol. 293, 2005, pp. 605.
[15] M. O. Avilés,A. D. Ebner, J. A. Ritter "Ferromagnetic seeding for the magnetic targeting of drugs and radiation in capillary beds."J. magn.Magn.Mater., Vol. 310, 2007, pp. 131
[16] M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, J. A Ritter" In vitro study of ferromagnetic stents for implant assistedmagnetic drug targeting" J. Magn. Magn.Mater., Vol. 311,2007, pp. 306.
[17] M. O. Avilés,J. O. Mangual, A. D. Ebner, J. A. Ritter, "Isolated swine heart ventricle perfusion model for implant assisted-magnetic drug targeting." Int. j. pharm., Vol. 361, 2008, pp. 202.
[18] Z. G. Forbes, B. B. Yellen, K. Barbee, G. Friedman "An approach to targeted drug delivery based on uniform magnetic fields." Magnetics, IEEE Transactions on, Vol. 39, 2003, pp. 3372.