Hexavalent Chromium Removal from Aqueous Solutions by Adsorption onto Synthetic Nano Size ZeroValent Iron (nZVI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32845
Hexavalent Chromium Removal from Aqueous Solutions by Adsorption onto Synthetic Nano Size ZeroValent Iron (nZVI)

Authors: A.R. Rahmani, M.T. Samadi, R. Noroozi


The present work was conducted for the synthesis of nano size zerovalent iron (nZVI) and hexavalent chromium (Cr(VI)) removal as a highly toxic pollutant by using this nanoparticles. Batch experiments were performed to investigate the effects of Cr(VI), nZVI concentration, pH of solution and contact time variation on the removal efficiency of Cr(VI). nZVI was synthesized by reduction of ferric chloride using sodium borohydrid. SEM and XRD examinations applied for determination of particle size and characterization of produced nanoparticles. The results showed that the removal efficiency decreased with Cr(VI) concentration and pH of solution and increased with adsorbent dosage and contact time. The Langmuir and Freundlich isotherm models were used for the adsorption equilibrium data and the Langmuir isotherm model was well fitted. Nanoparticle ZVI presented an outstanding ability to remove Cr(VI) due to high surface area, low particle size and high inherent activity.

Keywords: Adsorption, aqueous solution, Chromium, nZVI, removal.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1077503

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519


[1] S. Gupta and B. V. Babu, Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chemical Engineering Journal, 150, 2009, pp. 352- 365.
[2] M. Kobya, Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology, 91, 2004, pp. 317-321.
[3] Y. C. Sharma, Cr(VI) removal from industrial effluents by adsorption on an indigenous low-cost material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 215, 2003, pp. 155-162.
[4] K. Selvi, S. Pattabhi and K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Kidlington, ROYAUMEUNI: Elsevier 2001.
[5] D. Kaplan and T. Gilmore, Zero-Valent Iron Removal Rates of Aqueous Cr(VI) Measured Under Flow Conditions. Water, Air, & Soil Pollution, 155, 2004, pp. 21-33.
[6] N. Shao-feng, L.Yong, X. Xin-hua, and L. Zhang-hua, Removal of hexavalent chromium from aqueous solution by iron nanoparticles, Journal of Zhejiang University Science-B, 6(10), 2005, pp. 1022-1027.
[7] Kanel, Sushil Raj, Manning, Bruce, Charlet, Laurent and Choi, Heechul, Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol, 39, 2005, pp. 1291-1298.
[8] H. Sung, and I. Francis, Nanotechnology for Environmental Remediation, Springer Science+Business Media, Inc, 2006.
[9] He Feng and Zhao Dongye, Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environmental Science & Technology, 39, 2005, pp. 3314-3320.
[10] APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater. (19th ed.), Washington DC, APHA, 1998.
[11] Kanel, Sushil Raj, Greneche, Jean-Mark and Choi, Heechul, Arsenic (V) Removal from Groundwater Using Nano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material, Environ. Sci. Technol, 40, 2006, pp. 2045-2050.
[12] M. Ponder Sherman, G. Darab John, E. Mallouk, Thomas, Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology, 34, 2000, pp. 2564-2569.
[13] Xue Song Wang, Yu Jun Tang, Li Fang Chen, Fei Yan Li, Wen Ya Wan, Ye Bin Tan, Removal of Cr(VI) by Zero-valent, Iron-encapsulated Alginate Beads, 2009, pp. 263-267.
[14] C. K. Lai Keith and M. C. Lo Irene, Removal of Chromium (VI) by Acid- Washed Zero-Valent Iron under Various Groundwater Geochemistry Conditions. Environmental Science & Technology, 42, 2008. pp. 1238- 1244.
[15] M.J. Alowitz and M.M. Scherer, Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36, 2002, pp. 299-306.
[16] D. Karabelli, C. Uzum, T. Shahwan, A. E. Eroglu, T. B. Scott, K. R. Hallam, Batch Removal of Aqueous Cu2+ Ions Using Nanoparticles of Zero-Valent Iron: A Study of the Capacity and Mechanism of Uptake. Industrial & Engineering Chemistry Research, 47, 2008, pp. 4758-4764.
[17] K.K.H, Choy, G. McKay and JF Porter, Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl, 27, 1999, pp. 57-71.