Search results for: Thermal Machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2524

Search results for: Thermal Machine

274 Physico-Mechanical Properties of Jute-Coir Fiber Reinforced Hybrid Polypropylene Composites

Authors: Salma Siddika, Fayeka Mansura, Mahbub Hasan

Abstract:

The term hybrid composite refers to the composite containing more than one type of fiber material as reinforcing fillers. It has become attractive structural material due to the ability of providing better combination of properties with respect to single fiber containing composite. The eco-friendly nature as well as processing advantage, light weight and low cost have enhanced the attraction and interest of natural fiber reinforced composite. The objective of present research is to study the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite according to filler loading variation. In the present work composites were manufactured by using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt %). Jute and coir fibers were utilized at a ratio of (1:1) during composite manufacturing. Tensile, flexural, impact and hardness tests were conducted for mechanical characterization. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young-s modulus with increasing fiber content. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness were found to be increased with increasing fiber loading. Based on the fiber loading used in this study, 20% fiber reinforced composite resulted the best set of mechanical properties.

Keywords: Mechanical Properties; Coir, Jute, Polypropylene, Hybrid Composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3700
273 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
272 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
271 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
270 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can

Abstract:

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Keywords: Tri-metallic, upsetting, copper, brass, steel, aluminum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
269 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth

Abstract:

This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 0m) and structured US–Y catalyst film (Si/Al = 8, thickness 230m) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-onalloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y, Zeolite ZSM-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
268 Twitter Sentiment Analysis during the Lockdown on New Zealand

Authors: Smah Doeban Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
267 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.

Keywords: CNC machining, Six Sigma, Surface roughness, Taguchi methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
266 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
265 A Detailed Experimental Study of the Springback Anisotropy of Three Metals using the Stretching-Bending Process

Authors: A. Soualem

Abstract:

Springback is a significant problem in the sheet metal forming process. When the tools are released after the stage of forming, the product springs out, because of the action of the internal stresses. In many cases the deviation of form is too large and the compensation of the springback is necessary. The precise prediction of the springback of product is increasingly significant for the design of the tools and for compensation because of the higher ratio of the yield stress to the elastic modulus. The main object in this paper was to study the effect of the anisotropy on the springback for three directions of rolling: 0°, 45° and 90°. At the same time, we highlighted the influence of three different metallic materials: Aluminum, Steel and Galvanized steel. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to the direction of rolling. We also showed the role of lubrication in the reduction of the springback. Moreover, in this work, we have studied important characteristics in deep drawing process which is a springback. We have presented defaults that are showed in this process and many parameters influenced a springback. Finally, our results works lead us to understand the influence of grains orientation with different metallic materials on the springback and drawing some conclusions how to concept deep drawing tools. In addition, the conducted work represents a fundamental contribution in the discussion the industry application.

Keywords: Deep-Drawing, Grains orientation, Laminate Tool, Springback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
264 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
263 Optimized Facial Features-based Age Classification

Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park

Abstract:

The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.

Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
262 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
261 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: Activity-based cost estimating, Cost estimation, ETICS, Life cycle costing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
260 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network

Authors: Zukisa Nante, Wang Zenghui

Abstract:

Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.

Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
259 Computer Simulation of Low Volume Roads Made from Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Low volume roads are widely used all over the world. To improve their quality the computer simulation of their behavior is proposed. The FEM model enables to determine stress and displacement conditions in the pavement and/or also in the particular material layers. Different variants of pavement layers, material used, humidity as well as loading conditions can be studied. Among others, the input information about material properties of individual layers made from recycled materials is crucial for obtaining results as exact as possible. For this purpose the cyclic-load triaxial test machine testing of cyclic-load performance of materials is a promising test method. The test is able to simulate the real traffic loading on particular materials taking into account the changes in the horizontal stress conditions produced in particular layers by crossings of vehicles. Also the test specimen can be prepared with different amount of water. Thus modulus of elasticity (Young modulus) of different materials including recycled ones can be measured under the different conditions of horizontal and vertical stresses as well as under the different humidity conditions. Using the proposed testing procedure the modulus of elasticity of recycled materials used in the newly built low volume road is obtained under different stress and humidity conditions set to standard, dry and fully saturated level. Obtained values of modulus of elasticity are used in FEA.

Keywords: FEA, FEM, geotechnical materials, low volume roads, pavement, triaxial test, Young modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
258 Technologic Information about Photovoltaic Applied in Urban Residences

Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho

Abstract:

Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.

Keywords: Prospecting, technology forecasting, photovoltaic, urban residences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
257 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
256 Development of EPID-based Real time Dose Verification for Dynamic IMRT

Authors: Todsaporn Fuangrod, Daryl J. O'Connor, Boyd MC McCurdy, Peter B. Greer

Abstract:

An electronic portal image device (EPID) has become a method of patient-specific IMRT dose verification for radiotherapy. Research studies have focused on pre and post-treatment verification, however, there are currently no interventional procedures using EPID dosimetry that measure the dose in real time as a mechanism to ensure that overdoses do not occur and underdoses are detected as soon as is practically possible. As a result, an EPID-based real time dose verification system for dynamic IMRT was developed and was implemented with MATLAB/Simulink. The EPID image acquisition was set to continuous acquisition mode at 1.4 images per second. The system defined the time constraint gap, or execution gap at the image acquisition time, so that every calculation must be completed before the next image capture is completed. In addition, the <=-evaluation method was used for dose comparison, with two types of comparison processes; individual image and cumulative dose comparison monitored. The outputs of the system are the <=-map, the percent of <=<1, and mean-<= versus time, all in real time. Two strategies were used to test the system, including an error detection test and a clinical data test. The system can monitor the actual dose delivery compared with the treatment plan data or previous treatment dose delivery that means a radiation therapist is able to switch off the machine when the error is detected.

Keywords: real-time dose verification, EPID dosimetry, simulation, dynamic IMRT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
255 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method

Authors: W. Swiderski

Abstract:

In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.

Keywords: Composite material, ultrasonic, infrared thermography, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
254 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: Thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, embedded systems, energy harvesting, thermal harvesting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
253 High Specific Speed in Circulating Water Pump Can Cause Cavitation, Noise and Vibration

Authors: Chandra Gupt Porwal

Abstract:

Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge recirculation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging, if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently, and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal recirculation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. Author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios >1.5, for future projects and Nss be limited to 8500 - 9000 for cavitation free operation.

Keywords: Best efficiency point (BEP), Net positive suction head NPSHA, NPSHR, Specific Speed NS, Suction Specific Speed Nss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5061
252 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
251 Maximizer of the Posterior Marginal Estimate of Phase Unwrapping Based On Statistical Mechanics of the Q-Ising Model

Authors: Yohei Saika, Tatsuya Uezu

Abstract:

We constructed a method of phase unwrapping for a typical wave-front by utilizing the maximizer of the posterior marginal (MPM) estimate corresponding to equilibrium statistical mechanics of the three-state Ising model on a square lattice on the basis of an analogy between statistical mechanics and Bayesian inference. We investigated the static properties of an MPM estimate from a phase diagram using Monte Carlo simulation for a typical wave-front with synthetic aperture radar (SAR) interferometry. The simulations clarified that the surface-consistency conditions were useful for extending the phase where the MPM estimate was successful in phase unwrapping with a high degree of accuracy and that introducing prior information into the MPM estimate also made it possible to extend the phase under the constraint of the surface-consistency conditions with a high degree of accuracy. We also found that the MPM estimate could be used to reconstruct the original wave-fronts more smoothly, if we appropriately tuned hyper-parameters corresponding to temperature to utilize fluctuations around the MAP solution. Also, from the viewpoint of statistical mechanics of the Q-Ising model, we found that the MPM estimate was regarded as a method for searching the ground state by utilizing thermal fluctuations under the constraint of the surface-consistency condition.

Keywords: Bayesian inference, maximizer of the posterior marginal estimate, phase unwrapping, Monte Carlo simulation, statistical mechanics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
250 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
249 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder

Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini

Abstract:

In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.

Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
248 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide

Authors: Sanaz Seraj, Shohre Rouhani

Abstract:

Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.

Keywords: Fluorescence, graphene oxide, naphthalimide dye, quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
247 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process

Authors: A. Soualem

Abstract:

The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys.

The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restreint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.

Keywords: Deep drawing, Expansion, Restreint deep drawing, Springback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
246 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons

Authors: Su Ying-Ming

Abstract:

High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.

Keywords: Urban ventilation path, ventilation efficiency indices, CFD, building layout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
245 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381