@article{(Open Science Index):https://publications.waset.org/pdf/10000241,
	  title     = {A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder},
	  author    = {Z. Mazrouei-Sebdani and  A. Khoddami and  H. Hadadzadeh and  M. Zarrebini},
	  country	= {},
	  institution	= {},
	  abstract     = {In this research, waterglass based aerogel powder was
prepared by sol–gel process and ambient pressure drying. Inspired by
limited dust releasing, aerogel powder was introduced to the PET
electrospinning solution in an attempt to create required bulk and
surface structure for the nanofibers to improve their hydrophobic and
insulation properties. The samples evaluation was carried out by
measuring density, porosity, contact angle, heat transfer, FTIR, BET,
and SEM. According to the results, porous silica aerogel powder was
fabricated with mean pore diameter of 24 nm and contact angle of
145.9º. The results indicated the usefulness of the aerogel powder
confined into nanofibers to control surface roughness for
manipulating superhydrophobic nanowebs with water contact angle
of 147º. It can be due to a multi-scale surface roughness which was
created by nanowebs structure itself and nanofibers surface
irregularity in presence of the aerogels while a layer of fluorocarbon
created low surface energy. The wettability of a solid substrate is an
important property that is controlled by both the chemical
composition and geometry of the surface. Also, a decreasing trend in
the heat transfer was observed from 22% for the nanofibers without
any aerogel powder to 8% for the nanofibers with 4% aerogel
powder. The development of thermal insulating materials has become
increasingly more important than ever in view of the fossil energy
depletion and global warming that call for more demanding energysaving
practices.
},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {9},
	  number    = {1},
	  year      = {2015},
	  pages     = {71 - 74},
	  ee        = {https://publications.waset.org/pdf/10000241},
	  url   	= {https://publications.waset.org/vol/97},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 97, 2015},
	}