
 

 

  
Abstract—We constructed a method of phase unwrapping for a 

typical wave-front by utilizing the maximizer of the posterior marginal 
(MPM) estimate corresponding to equilibrium statistical mechanics of 
the three-state Ising model on a square lattice on the basis of an 
analogy between statistical mechanics and Bayesian inference. We 
investigated the static properties of an MPM estimate from a phase 
diagram using Monte Carlo simulation for a typical wave-front with 
synthetic aperture radar (SAR) interferometry. The simulations 
clarified that the surface-consistency conditions were useful for 
extending the phase where the MPM estimate was successful in phase 
unwrapping with a high degree of accuracy and that introducing prior 
information into the MPM estimate also made it possible to extend the 
phase under the constraint of the surface-consistency conditions with a 
high degree of accuracy. We also found that the MPM estimate could 
be used to reconstruct the original wave-fronts more smoothly, if we 
appropriately tuned hyper-parameters corresponding to temperature to 
utilize fluctuations around the MAP solution. Also, from the 
viewpoint of statistical mechanics of the Q-Ising model, we found that 
the MPM estimate was regarded as a method for searching the ground 
state by utilizing thermal fluctuations under the constraint of the 
surface-consistency condition.  
 

Keywords—Bayesian inference, maximizer of the posterior 
marginal estimate, phase unwrapping, Monte Carlo simulation, 
statistical mechanics 

I. INTRODUCTION 
AVE-FRONTS often carry information through noisy 
channels. Numerous researchers [1]–[6] have studied 

methodologies of utilizing information on wave-fronts both 
from theoretical and practical viewpoints. They have also 
proposed various techniques of reconstructing original 
wave-fronts using a set of principal values for phase differences 
observed with optical instruments by using interferometers for 
this purpose. This problem is called phase unwrapping and 
various techniques have been proposed to solve this problem, 
such as the methods of least squares estimation [1], [2], the 
MAP estimation using the conjugate gradient method [7], the 
simulated annealing [8],[9] and the method of maximum 
entropy[9]. Even now, in order to improve the performance of 
phase unwrapping, various approaches have been tried, such as 
the edgelist phase unwrapping algorithm [10]. Although many 
researchers have tried various approaches based on Bayesian 
inference to phase unwrapping, there have been few systematic 
approaches to clarifying both static and dynamic properties of 
the methods for phase unwrapping. 
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On the other hand, theoretical physicists have investigated 

information science [11]-[19] in recent years, such as image 
restoration and error-correcting codes on the basis of an 
analogy between statistical mechanics and Bayesian inference 
using the maximizer of the posterior marginal (MPM) estimates. 
Researchers have then applied statistical mechanics to 
problems in information technology, such as information 
communication and quantum computation. The field of 
statistical mechanics of information has been developed as an 
established research field. One of the present authors have 
utilized statistical mechanics to various problems, such as 
image restoration [14], inverse halftoning [15], [16], [17] and 
noise reduction of JPEG-compressed image [18]. Recent years, 
Saika and Nishimori [19] have investigated phase retrieval 
based on the analogy between the statistical mechanics of spin 
glasses and Bayesian inference via MPM estimate. 

We formulated the problem of phase unwrapping in SAR 
interferometry from the viewpoint of statistical mechanics of 
information in this study. We constructed a method of phase 
unwrapping based on the statistical mechanics of a three-state 
Ising model on a square lattice. We used the model of the true 
prior by suppressing the number of non-zero states of the 
three-state Ising spin at each sampling point. We then used the 
likelihood composed of two terms. The first was the term that 
enhanced the smooth structures of wave-fronts. The second 
was the surface-consistency conditions of the wave-fronts.  We 
next investigated both static and dynamic properties by using 
Monte Carlo simulations for a typical wave-front in synthetic 
aperture radar (SAR) interferometry from the viewpoint of 
statistical mechanics. Although we used a single artificial 
model for performance estimation, it was expected that the 
wave-front has the general property of wave-fronts in the SAR 
interferometry. We first examined the static properties of an 
MPM estimate for phase unwrapping based on a phase diagram 
that represented the region where the MPM estimate succeeded 
in unwrapping the phase in hyper-parameter space. The term 
“PU phase” is used in this manuscript to represent the region 
where the MPM estimate succeeds in phase unwrapping with a 
high degree of accuracy. Based on the characteristics of the PU 
phase for typical wave-fronts in SAR interferometry, we found 
that the surface-consistency conditions for each plaquette 
effectively extended the range of the PU phase along the Tm 
axis, if we set to 0.6<h, and moreover that the surface- 
consistency conditions did not efficiently extend the range of 
the PU phase along the Tm axis, if we set to 0.6<h. We here 
noted that Tm is a hyper-parameter represents absolute 
temperature and h is a parameter which adjusts prior 
information. 
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Fig. 1 Statistical mechanics 

 

 
Fig. 2 Statistical mechanics and Bayesian inference 

 
We next examined the efficiency of prior information in the 

MPM estimate for a phase unwrapping based on the phase 
diagram in hyper-parameter space. Using Monte Carlo 
simulations, we found that surface-consistency conditions 
effectively worked to extend the range of the PU phase along 
the Tm axis for 0.6<h, and that the surface-consistency 
conditions did not efficiently extend the range of the PU phase 
along the Tm axis for 0<h<0.6. These results suggested the 
properties of prior information in that the MPM estimate works 
robustly for phase unwrapping by introducing prior 
information on the original wave-fronts under the 
surface-consistency conditions for each plaquette. We also 
examined the dynamic properties of the MPM estimate based 
on the time evolution of performance measures using mean 
square error utilizing a Monte Carlo simulation for the artificial 
wave-front which approximated typical wave-fronts in SAR 
interferometry. We found that the phase was smoothly 
unwrapped by appropriately utilizing fluctuations around the 
MAP solution. These results suggested evidence that the 
probabilistic information processing due to the MPM estimate 
became a useful tool to achieve smooth phase unwrapping. 
Also, we discussed static and dynamic properties of the MPM 
estimate on the basis of statistical mechanics of information. 
From the viewpoint of statistical mechanics, it was clarified 
that the MPM estimate is regarded as a method for searching 
the ground state of the energy function composed of the 
three-state Q-Ising model by making use of thermal 
fluctuations. Also, we found that the MPM estimate is effective 
for phase unwrapping under the constraint of surface- 

consistency condition which enhances an energy gap above the 
ground state. Further, we found that the MPM estimate carries 
out phase unwrapping more smoothly than the MAP estimation 
via simulated annealing for the typical wave-front in the SAR 
interferometry.  

The content of this paper is organized as follows. First, we 
outline the framework of statistical mechanics. Then, we first 
describe a general formulation of the problem of phase 
unwrapping on the basis of Bayesian inference using the MPM 
estimate. We next investigate both the static and dynamic 
properties of the present method using a Monte Carlo 
simulation for typical wave-fronts in SAR interferometry. The 
conclusion is devoted to a summary and discussion. 

II. STATISTICAL MECHANICS 
As shown in Fig. 1, a principal goal of statistical 

mechanics is to clarify thermodynamics of many-body 
systems starting with interactions between microscopic 
elements. In general prescription of statistical mechanics, 
thermal average of macroscopic physical quantity can be 
estimated as ensemble average over all possible states via a 
probability distribution:  

[ ]})({exp1})Pr({ SH
Z

S β−=                                      (1) 

for a given Hamiltonian H({S}). In this equation, we use a 
set of the Ising spin states {S} as a set of typical microscopic 
elements. We take the unit of temperature such that 
Boltzmann’s constant kB is unity. As a result, β=1/T. 
Normalization factor Z is called the “partition function”:  

[ ]∑∑ ∑ −=
}{ }{ }{1 2

})({exp
S S S N

SHZ βL                               (2) 

The probability distribution in eq. (1) is termed the 
“Boltzmann factor”. Using the Gibbs-Boltzmann 
distribution, we can estimate the thermal average of 
macroscopic quantity A({S}) as  

[ ] }).({})({exp1
}{ }{ }{1 2

SASH
Z

A
S S S N

∑∑ ∑ −= βL          (3) 

Though it is difficult to calculate this macroscopic 
quantity directly, however it can be estimated by using the 
approximation theory, such as the mean-field theory and the 
Bethe approximation. As a recent development of statistical 
mechanics, researchers have clarified that statistical mechan 
ics serves a framework and various techniques for 
probabilistic information processing based on the analogy 
(Fig. 2) between statistical mechanics and Bayesian 
inference using the MPM estimate. 
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Fig. 3 General formulation for phase unwrapping 

 

 
Fig. 4 Typical wave-front in SAR interferometry 

 

 
Fig. 5 Interferogram of original wave-front in Fig. 4 

III. GENERAL FORMULATION 
As shown in Fig. 3, we have presented a general formulation 

of the problem of phase unwrapping on the basis of Bayesian 
inference using the MPM estimate in this section. 

 

Let us first consider an original wave-front {ξx,y} (0<ξx,y<∞, 
x, y=1,...,L) in this study. If we treat a realistic case, we can use 
the typical or realistic wave-front in Fig. 4. If we investigate the 
statistical performance of the present method, on the other hand, 
we need to consider a set of wave-fronts {ξx,y} that are 
generated by the true prior expressed as Pr({ξx,y}). Then, as 
seen in Fig. 5, we observe the interferogram:  

πππξη −+= )2,mod( ,, yxyx .                                 (4) 

We then obtain two sets of principal values for phase 
differences:  

),()2,mod( ,,1, yxzx
yxyx

x
yx σπππηητ +−+−= +  and      (5) 

),()2,mod( ,1,, yxzx
yxyx

y
yx σπππηητ +−+−= +              (6) 

from the interferogram. These phase differences are, as shown 
in Fig. 6, corrupted by noise. We especially assumed Gaussian 
noise z(x, y) as N(0, 1). As shown in Fig. 7(a), the Nyquist 
sampling theorem holds as  

,|| ,,1 πξξ <−+ yxyx                                             (7) 
if aliasing occurs at all sampling points. However, the Nyquist 
sampling theorem in Fig. 7(b) does not hold as  

,|| ,,1 πξξ >−+ yxyx                                             (8) 
if aliasing occurs at some sampling points. In this case, 
discontinuity 2π appears at some sampling points in the pattern 
of the principal values for the phase differences shown in Fig. 6. 
We next unwrap the phase by utilizing the set of principal 
values for the phase differences, {τxi,j} and {τyi,j}, on the basis of 
Bayesian inference using the MPM estimate corresponding to 
the statistical mechanics of the three-state Q-Ising models  
{nx

i,j} (nx
i,j =-1, 0, +1, i=1,…,L-1, j=1,…,L) and {ny

i,j} (ny
i,j =-1, 

0, +1, i=1,…,L, j=1,…,L-1) on the square lattice. We 
reconstruct the original wave-front with this method to 
maximize the marginal posterior probability as  

∑ ∑
≠

=
x

yx
x y

x
yx nn n

yxyx

n

x
yx nnn

,
, }{ }{

, }){},{|}{},Pr({maxargˆ ττ         (9) 

and 

∑ ∑
≠

=
y

yx
y x

y
yx nn n

yxyx

n

y
yx nnn

,
, }{ }{

, }){},{|}{},Pr({maxargˆ ττ ,     (10) 

where the posterior probability is estimated based on the Bayes 
formula using the likelihood and the model of the true prior as 

( )
( ) ( )

( ) ( )∑∑

∝

}{ }{

}{},{|}{},{Pr}{},{Pr
}{},{|}{},{Pr}{},{Pr

}{},{|}{},{Pr

x y

yxyxyx

yxyxyx

yxyx

nnnn
nnnn

nn

τ τ

ττ
ττ

ττ

.               

(11) 

We assumed the model of the true prior in this study by 
suppressing the number of non-zero states of the three-state 
Ising spins, {nx

i,j} and {ny
i,j}, as 
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Fig. 6 Set of principal values for phase differences observed  from 

interferogram in Fig. 5 
 

 
(a) 

 
(b) 

 
Fig. 7 Nyquist sampling theorem. (a) Case in which aliasing does not 
occur at all sampling points and (b) case in which aliasing occurs at 

some sampling points 

{ }
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We then assumed the likelihood that would enhance the smooth 
structures seen in natural wave-fronts by suppressing the 
differences in wave-fronts as 
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(15) 

As shown in Eqs. (13)–(15), the likelihood we use here is 
composed of two terms. The first is a term that enhances the 
smooth structures seen in natural wave-fronts. The second 
represents surface-consistency conditions for each plaquette.  

A reconstructed wave-front is constructed in this study by the 
expectation value for a wave-front slope as  

( )νν
yxyx nn ,,ˆ Θ=  and                                                               (16) 

( ) .}{},{|}{},{Pr
}{ }{

,, ∑∑ ⋅=
x yn n

yx
yxyx

yx nnnn νν ττ                     (17) 

This is where  

( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −−−⎟

⎠
⎞

⎜
⎝
⎛ +−=

3

1 2
1

2
1

k
kxθkxθxΘ

.
                   (18) 

 The wave-fronts are then reconstructed by making use of 
solutions {nx} and {ny} as 

( ) ( )∑∑
−

=

−

=

++++=
1

0
,,

1

0
0,0,0,0, 22

y

m
mxnx

x

l
llyx nnzz πτπτ

,
 

(19) 
where z0,0=ξ0,0=0. 
  We will discuss the MPM estimate for phase unwrapping 
using the three-state Q-Ising model on the square lattice in the 
last part of this section from the viewpoint of statistical  

mechanics of information. In the language of statistical  
mechanical informatics, the maximization of marginal posterior  
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probability is regarded as constructing an equilibrium state of 
the Q-Ising models whose Hamiltonian is at finite temperature 
Tm. Further, the present method is regarded as a technique of 
phase unwrapping searching the ground state of the 
Hamiltonian in Eq. (20) by utilizing thermal fluctuations from 
an initial state set randomly. Consequently, we explain how 
thermal fluctuations are useful for phase unwrapping due to the 
MPM estimate for typical wave-fronts in the SAR 
interferometery in the parts that follow.  
 
 

 
Fig. 8 Mean square error as a function of parameter Tm. First, ▲ 

denotes the data for J=1, α=0, Γ=0. Then, ■ denotes the data for J=1, 
α=0, Γ=0.1(2π)2.  Next, ◆ denotes data J=1, α=0, Γ=0.2 (2π)2 

 

 
Fig. 9 Phase diagram on Tm-Γ plane of MPM estimate for phase 

unwrapping for wave-front in Fig. 4 for α=0, 0.5 and 1 at J=1 and h=0 

 
Fig. 10 Phase diagram on Tm-Γ plane of MPM estimate for phase 
unwrapping for wave-front in Fig. 4 for h=0, 1, at J=1, and α=1 
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(20) 
We numerically evaluate the performance measure based on 

mean square error to clarify the performance of the present 
method as 

( )∑ ∑ −=
= =

L

x

L

y
yxyxz

L
σ

1 1

2

,,2

1 ξ .                                                     (21) 

Here, {zx,y} denotes the wave-front reconstructed with the 
present method for a realistic image. However, we estimate 
statistical performance for the set of {ξx,y}, which are generated 
by the true prior expressed as probability distribution Pr({ξx,y})  
as 

( ) ( )∑∑∑
= =

−=
L

x

L

y
yxyxz

L
σ

1 1

2
,,2

}{

1}{Pr ξξ
ξ .

 

(22) 
These variables become zero, if all kinds of wave-fronts are 
completely reconstructed. 

IV. PERFORMANCE 
We investigated the performance of the MPM estimate for 

phase unwrapping using the Monte Carlo simulation for typical 
wave-fronts in SAR interferometry. We examined both the 
static and dynamic properties of the MPM estimate using mean 
square error. 

When we estimated the performance of the MPM estimate, 
we used the original wave-front in Fig. 4. As shown in Fig. 5, 
we then observed the interferogram {ηx,y} (|ηx,y|< π , x, 
y=1,…,L) using the optical instruments via the interferometer. 
When we carried out the phase unwrapping, as shown in Fig. 6, 
we used the principal values of phase differences {τxx,y} (|τxx,y|<
π , x=1,…,L-1, y=1,…,L) and {τyx,y} (|τyx,y|<π , x=1,…,L, 
y=1,…,L-1) both of which were corrupted by additive Gaussian 
noise with N(0,σx=0.02) and N(0,σy=0.02) with each other. We 
carried out Monte Carlo simulation with 20000 MCS in the 
procedure of phase unwrapping. We then estimated statistical 
performance based on the mean square error between the 
original and reconstructed wave-fronts.  

First, we estimated the static properties of the MPM estimate 
for the wave-front in Fig. 4 based on the phase diagram in 
hyper-parameter space. We described the phase diagram by 
evaluating how mean square error depends on parameter Γ for 
our purposes. We found that MPM estimates were successful in 
phase unwrapping up to Tm~0.4 (1.2, 2.0) as shown in Fig. 8, if 
we set Γ/(2π)2=0 (0.1, 0.2) at J=1, α=0, and h=0. These results 
indicated that the surface-consistency conditions were useful 
for extending the range of the PU phase in hyper-parameter 
space. We described the phase diagram given in Fig. 9 by 
carrying out the simulations for various values of 
hyper-parameters, such as Tm, Γ, and α. 
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Fig. 11 Time evolution of mean square error obtained by MPM 
estimate using Monte Carlo simulation for wave-front in Fig. 2 

 
This figure clarifies that the MPM estimate succeeds in 

phase unwrapping over a wide range under the constraint of 
surface-consistency condition. We next evaluated how mean 
square error depends on parameter h to describe the phase 
diagram in hyper-parameter space to clarify the efficiency of 
prior information in Eq. (11). As seen in Fig. 10, we clarified 
that prior information is useful for extending the PU phase 
under the constraints of surface-consistency conditions. 
However, we also found that prior information is not useful for 
extending the PU phase, if we set h<0.6.  These results 
indicated that the present method works effectively even at 
high temperature up to Tm~5.2 under the constraint of the 
surface-consistency condition. Also, we indicated that the prior 
information on the original wave-fronts is useful for extending 
the PU phase under the constraint of the surface-consistency 
condition. 

Next, we examined the dynamic properties of the MPM 
estimate for phase unwrapping. As shown in Fig. 11, we 
described the time evolution of mean square error using Monte 
Carlo simulations for the wave-front in Fig. 4. This figure 
indicates that the MPM estimate smoothly reconstructs the 
wave-front with great accuracy in the upper region where the 
MPM estimate is successful in very accurate phase unwrapping. 
For instance, we found the result that the MPM estimate 
accurately reconstructs the original wave-fronts in Fig. 4 by 
using the Monte Carlo simulation with ~230 Monte Carlo steps 
(MCS) at Tm=1, J=1, α=0, h=0 and Γ=0.2(2π)2. This suggests 
that the fluctuations around the MAP solution are useful for 
achieving smooth phase unwrapping due to the MPM estimate. 

V.  STATISTICAL MECHANICAL PERFORMANCE 
On the basis of analogy between statistical mechanics and 

Bayesian inference via the MPM estimate, we discussed the 
performance of the present method for phase unwrapping for 
the artificial wave-front in SAR interferometry. In this field of 
statistical mechanics, researchers have utilized the Monte Carlo 
simulations to clarify thermodynamic properties of many-body 
systems, such as the Ising spin system. So, we here utilized the 
Monte Carlo simulations which numerically approximated both 
static and dynamic properties based on various methods, such 
as the Metropolis and heat bath algorithm.  

Especially, we examined both static and dynamic properties 
of the MPM estimate utilizing Monte Carlo simulation via the 
Metropolis algorithm. As shown in the previous chapter, it was 
obviously seen that the present method was a method for 
searching the ground state of the three-state Q-Ising model 
utilizing thermal fluctuations, and then, phase unwrapping due 
to the MPM estimate was regarded as relaxation from an initial 
state to the ground state. Therefore, we estimated the transition 
probability from 1st excited state to the ground state in 
relaxation process by making use of the Monte Carlo 
simulation based on the Metropolis algorithm. In general, it has 
been well-known that low-temperature property of many-body 
systems depends both on the ground state and the energy gap 
Δε = ε1st - ε g.s. above the ground state. So, we here discussed the 
relation between transition probability between the ground 
state and 1st excited state and the energy gap between these two 
states. In the Monte Carlo simulation based on the Metropolis 
algorithm to construct thermal equilibrium state of many-body 
systems, we utilized the transition probability from an initial 
state {z1} to a final state {z2} as  

[ ]⎩
⎨
⎧

<−−
<

=→
)(/)(exp
)(1

}){}Pr({
1212

12
21 εεεε

εε

mT
zz ,    

(23) 
based on the Metropolis algorithm. Here, ε1 (ε2) is the energy of 
the state {z1} ({z2}). Then, based on the Metropolis algorithm 
in Eq. (23), it was obviously seen that the transition probability 
at T=Tm from the ground state {g. s.} to the 1st excited state {1st 
excited state} is expressed as 

⎥
⎦

⎤
⎢
⎣

⎡ Δ
−∝→

mT
εexp})stateexcited1{}g.s.Pr({ st

.               (24)
  

This showed the results that transition probability from the 
ground state to the 1st excited state almost vanishes under the 
constraint of surface-consistency condition, if Δε<<Tm. and 
therefore that the ground state becomes stable even at finite 
temperature under this condition.  
Next, with the use of the knowledge on statistical mechanics, 

we here examined the static and dynamic properties of the 
MPM estimate for phase unwrapping. Then, in view of 
statistical mechanics, the MPM estimate for the present case 
was regarded as relaxation process to the ground state of the 
present system with the Hamiltonian in Eq. (20). By 
considering the elementary excitation from the ground state of 
this system, we easily obtained the energy gap above the 
ground state as  

.2)1(2~g.s.st1 hΓJ +++−=Δ αεεε                                    (25)  
From this equation, we derived the result that the system has a 
large energy gap Δε~ 2(2π)2 above the ground state under the 
constraint of the surface-consistency condition, if we set to 
Γ~(2π)2, J~1, α~1 and h~1. This result clarified that the 
transition probability at Tm<<2(2π)2 from the ground state to the 
1st excited state almost vanishes as  

⎥
⎦

⎤
⎢
⎣

⎡
−∝→

mT

2
st )2(2exp})stateexcited1{}g.s.Pr({ π

,   (26) 
if we set to Γ~(2π)2 in the relaxation process of the present 
system via the Metropolis algorithm, and therefore that the 
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system is not excited from the ground state by thermal 
fluctuations under this condition. Actually, as shown in Fig. 9, 
it was confirmed that the MPM estimate is effective up  to 
Tm=2.6 (3.1, 3.6) under the constraint of surface-consistency 
condition, 0.6(2π)2<Γ. Next, we examined the efficiency of the 
prior information for the MPM estimate for phase unwrapping. 
As seen from Eq. (25), we easily saw that the energy gap above 
the ground state was further enhanced by introducing the prior 
information into the model system, and then that the ground 
state is further stabilized. Actually, as shown in Fig. 10, it was 
confirmed that that the MPM estimate succeeds in extending 
the PU phase up to Tm=5.1 by introducing prior information 
into the three-state Q-Ising model in Eq. (20). 
  Next, from the statistical mechanical point of view, we 
considered the dynamical property of the MPM estimate via the 
Monte Carlo simulation based on the Metropolis algorithm. 
Because the transition probability between two states generally 
became larger with the increase in the absolute temperature Tm 
in the PU phase, it was therefore expected that the equilibrium 
state was smoothly carried out at high temperature Tm in the PU 
phase. Based on this knowledge, it was obvious that the 
convergence to the ground state became smoother at higher 
temperature in the PU phase. Actually, as shown in Fig. 11, it 
was confirmed that the MPM estimate smoothly reconstructs 
the wave-front with great accuracy in the upper region where 
the MPM estimate is successful in very accurate phase 
unwrapping. 

At the end of this chapter, we compared the performance of 
the MPM estimate with that of the MAP estimation via 
simulated annealing [8]. In the MAP estimation via simulated 
annealing, we optimized the cost function expressed as the 
Hamiltonian in eq. (17) following the annealing schedule:  

STEP
)( finalinitialinitial

nTTTTm −−= .                                     (27) 

Here, Tinitial/Tfinal is initial/final temperature set for simulated 
annealing. Then, STEP is the number of the Monte Carlo steps 
(MCS) and n is an integer from 0 to STEP. Using the Monte 
Carlo simulation for the artificial wave-fronts in Fig. 3, we 
found that the MAP estimation via the simulated annealing is 
successful in phase unwrapping with the same accuracy as the 
MPM estimate, and that the MAP estimation via the simulated 
annealing succeeds in phase unwrapping for the typical 
wave-front with ~500 MCS, if we set to J=1, α=1, h=1, Tinitial 
=8.0, Tfinal=1.0 and STEP=1000. Although the simulations have 
been carried out under restricted conditions, we found that it is 
very difficult to detect the optimal condition to realize smooth 
phase unwrapping due to complexity of the setting of the 
annealing schedule. On the other hand, as shown in above, we 
found that it is not so difficult to find the optimal condition to 
realize smooth phase unwrapping. These facts suggested that 
the MPM estimate is more useful than the MAP estimation via 
simulated annealing for phase unwrapping.  

VI. SUMMARY AND DISCUSSION 
We constructed a method of phase unwrapping via a 

three-state Q-Ising model arranged on a square lattice on the 
basis of an analogy between statistical mechanics and Bayesian 
inference via a MPM estimate.  

We then investigated both the static and dynamic properties 
of the MPM estimate by making use of Monte Carlo 
simulations for the artificial wave-front which was typical in 
the SAR interferometry to clarify the performance of the 
present method for phase unwrapping. First, we examined the 
static properties of the MPM estimate based on a phase diagram 
of the MPM estimate in hyper-parameter space, such as the 
Tm-Γ plane. The phase diagram clarified that the MPM estimate 
reconstructed the wave-front under the constraints of 
surface-consistency conditions and that prior information was 
useful for expanding regions where the MPM estimate 
effectively worked under the constraint of surface-consistency 
condition. We then found that the MPM estimate smoothly 
reconstructed original wave-fronts, which are typical in the 
SAR interferometry. Next, in view of statistical mechanics, we 
investigated static and dynamic properties of the MPM estimate 
for phase unwrapping. We found in view of statistical 
mechanics that the MPM estimate is regarded as the method for 
searching the ground state of the three-state Q-Ising model via 
thermal fluctuations around the MAP solution, and then that 
phase unwrapping by means of the MPM estimate corresponds 
to relaxation process of the three-state Q-Ising model. 
Especially, we found that it is important to enhance energy gap 
above the ground state to extend the PU phase by introducing 
the constraint of the surface-consistency condition and that the 
PU phase is further extended by introducing the model prior 
under the constraint of the surface-consistency condition. Then, 
we found that the MPM estimate succeeds in phase unwrapping 
smoothly, so that the energy gap is set larger than the thermal 
fluctuations around the MAP estimation. We found that the 
MPM estimate is useful for phase unwrapping under the 
constraint of the surface- consistency condition.   

It is important to clarify the performance of the present 
method for realistic cases, such as InSAR images, to solve 
future problems.  
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