
 

 

 
Abstract—Safe performance and efficient energy consumption are 

essential factors for designing a control system. This paper presents a 
reinforcement learning (RL) model that can be applied to control 
applications to improve safety and reduce energy consumption. As 
hardware constraints and environmental disturbances are imprecise 
and unpredictable, conventional control methods may not always be 
effective in optimizing control designs. However, RL has 
demonstrated its value in several artificial intelligence (AI) 
applications, especially in the field of control systems. The proposed 
model intelligently monitors a system's success by observing the 
rewards from the environment, with positive rewards counting as a 
success when the controlled reference is within the desired operating 
zone. Thus, the model can determine whether the system is safe to 
continue operating based on the designer/user specifications, which 
can be adjusted as needed. Additionally, the controller keeps track of 
energy consumption to improve energy efficiency by enabling the idle 
mode when the controlled reference is within the desired operating 
zone, thus reducing the system energy consumption during the 
controlling operation. Water temperature control for a hydroponic 
system is taken as a case study for the RL model, adjusting the variance 
of disturbances to show the model’s robustness and efficiency. On 
average, the model showed safety improvement by up to 15% and 
energy efficiency improvements by 35%-40% compared to a 
traditional RL model. 
 

Keywords—Control system, hydroponics, machine learning, 
reinforcement learning.  

I. INTRODUCTION 

YDROPONICS is a significant system in new agricultural 
methods. It utilizes nutrient-rich water rather than soil for 

plant nourishment. In the past, hydroponics did not consider 
water temperature, but some studies show maintaining the 
water temperature in the hydroponic system in the water 
reservoir has many effects on the growth processes from the 
initial stages of development to flower formation [1]-[4]. Some 
experts agree that the best water solution temperature for 
hydroponics is between 65 °F (18 °C) and 80 °F (26 °C). 
Therefore, for healthy roots and the best nutrition uptake, this 
temperature range is recommended [5]. These innovative 
farming methods promise sustainable food production, 
especially for challenging environments like the state of 
Arizona, a desert environment where temperatures are high and 
water sources are rare. With a growing need for food due to 
global population increase, engineers are constantly putting 
forth innovative agricultural technologies.  
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Such innovation may be a boon, but safety is an important 
aspect of implementing these technologies, especially for 
control systems applications, which control other hardware 
components that might affect the surrounding environment. 
Some effects to the environment may occur from malfunction 
of components due to hardware constraints. In addition, the 
external environment might be extreme such that the installed 
hardware may not meet the desired specifications. In these 
cases, letting the agent/controller operate with unsuccessful 
accomplishments might lead to unsafe region operation. This is 
particularly true for hydroponic systems, which can be installed 
in residential homes, restaurants, hospitals, or large vertical 
farming for industrial purposes. Consequences of continued 
under performance can be serious, possibly causing damage to 
the property, plants, or even a loss of life if something like a fire 
occurred. 

Energy consumption is also important with hydroponics, 
where the new system heating and cooling water consumes 
more energy than the prior approach using only water pumps 
and other subsystems. To reduce energy consumption, the 
model aims to keep the agent running in low power/idle mode 
just under or above the thresholds which turn the external 
disturbances into advantages inside the root zone temperature 
as the environment stochastically changes. Overall, the model 
seeks to promote safety and energy efficiency while 
maintaining optimal water temperature in the hydroponic 
system. 

II. LITERATURE REVIEW 

This section intends to present three topics in the literature 
review of improving safety and energy efficiency using RL 
control model and compare them with the proposed model.  

A. Reference Governors 

Enforcing safety to a control system via governors has been 
proposed in many forms in the literature. For instance, using 
scalar and vector reference governors, command governors, 
extended command governors, incremental reference 
governors, feedforward reference governors, parameter 
governors, and virtual state governors [6], [7] are all suitable 
methods when the controller can overcontrol the environment/ 
plant to the desired zone range. However, in some real-world 
applications, disturbances overwhelm the controller 
performance, meaning governing the controller via reference 
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governors may not be ineffective.  

B. Safe Reinforcement Learning  

The process of learning policies that optimize the expectation 
of the return to assure reasonable system performance with 
respect to safety concerns is known as "safe reinforcement 
learning" [8]. Nevertheless, the optimal policy may not 
guarantee 100% safety under uncertain hardware and 
environmental disturbances. The proposed model can be 
integrated after using the safe RL methods of exploring the safer 
policy to monitor the controller success and performance.    

C.  Reducing Energy Cost for Heating, Ventilation, and Air 
Conditioning 

Heating, Ventilation, and Air Conditioning (HVAC) is a 
major energy consumer in residential sectors, and RL has had 
great success in controlling temperature with high energy 

efficiency. [9]. However, many RL models used other 
supplements such as electronic devices, actuators, and sensors 
that were interconnected with Internet of Things (IoT) 
technologies. In the current model, the energy efficiency 
approach is integrated within the agent block and operates 
automatically. With no external devices required, both 
hardware cost and energy consumption of the hardware are 
reduced. 

III. BACKGROUND 

A. RL for Control System 

RL, a general class of algorithms in the field of machine 
learning, is highly influenced by the theory of Markov Decision 
Processes (MDP) [10]. The general relationship framework 
between RL and control systems is represented by Fig. 1 [11]. 

 

 

Fig. 1 Traditional RL and classical control system model [11] 
 

The primary components of the RL system are the agent 
(learner), the environment (where the agent observes and 
interacts with changing states), the policy (controller that the 
agent follows to take actions), and the reward (the signal that 
the agent observes to identify optimality upon taking actions).   

Model-based algorithms, exemplified by the SARSA 
algorithm [12], involve RL in initially learning the model 
knowledge, which represents the dynamics of the environment, 
and subsequently deriving the optimal strategy based on this 
acquired understanding. This approach allows RL to build an 
internal model of the environment's behavior. 

  On the other hand, model-free approaches, such as Q-
learning algorithms [12] or policy optimization algorithms [13], 
take a different route. In these algorithms, RL bypasses the 
explicit learning of the environment's model and instead 
directly calculates the optimal strategy through trial and error. 
This model-free strategy is particularly useful in scenarios 
where the exact dynamics of the environment are complex or 
unknown, making it challenging to formulate an accurate 
model. 

In essence, model-based RL aims to understand the 
underlying structure of the environment, leveraging this 

knowledge for strategy development, while model-free RL 
focuses on directly optimizing actions without explicit 
knowledge of the environment's dynamics. 

B. Proximal Policy Optimization (PPO) Algorithm 

The proposed model used PPO for the RL algorithm. PPO is 
a deep RL algorithm, one of the model free algorithms 
introduced in 2017 [13]. PPO algorithms have some of the 
benefits of trust region policy optimization [13], but they are 
much simpler to implement, more general, and have better 
sample complexity. The main principle of PPO - Clipped 
Surrogate Objective version is that, after an update, the new 
policy 𝜋 𝑎 |𝑠  should be not too far from the old policy 
𝜋 𝑎 |𝑠 .  
 

𝑟 𝜃  
𝑎 𝑠

𝑎 𝑠          (1) 

 

𝐿 𝜃 𝐸 𝑟 𝜃  𝐴         (2) 

 

𝐿 𝜃  𝐸  min 𝑟 𝜃  𝐴 , 𝑐𝑙𝑖𝑝  𝑟 𝜃 , 1 𝜖, 1𝜖 𝐴  (3) 
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The 𝐴  is the advantage function which is the difference 
between the q value for action 𝑎 in state 𝑠 and the average value 
of that state.  
 

𝐴 s, a Q  s|a 𝑉 𝑠       (4) 
 

If the probability ratio between the new policy and the old 
policy falls outside the range (1 — ε) and (1 + ε), the advantage 
function will be clipped. ε is recommended and set to 0.2 in the 
original PPO paper [13]. Basically, the advantage function is a 
measure of how much a certain action is a good or bad decision 
given a certain state. The power of PPO algorithms is that after 
an update, the new policy will not be too far from the old policy. 
For that, PPO uses clipping to avoid updates that are too large. 

IV. MODEL METHODOLOGY  

In this model, the agent has four components (policy, RL 
algorithm, safe performance, save energy). Policy and RL 
algorithm have been briefly covered in the background section. 
In Subsections IV A and B, the additional components to the 
general RL framework, safe performance and save energy, are 
explained. 

 

 

Fig. 2 Proposed Model 

A. Safe Performance  

Safe Performance (SP) focuses on monitoring agent success 
through the return rewards from the environment during the RL 
controller operation. For instance, if the agent is not functioning 
with good controlling performance for any reason (hardware 
constraints, rough environment disturbances), SP will turn off 
the agent, and it will no longer give actions to the environment 
(system/plant) or receive new observations. Furthermore, SP is 
not limited to simply turning off the agent; it can also be used 
to notify the user via an alarm signal, such as a red light or an 
IoT notification system. Depending on the application, the 
unsuccessful percentage can be adjusted as needed. For 

example, in critical applications, the control engineer could 
specify this metric in the design process. In other noncritical 
applications, the user may have the choice to modify the desired 
unsuccessful metric for the system. In this study, the 
unsuccessful metric is considered as a percentage, the 
percentage is the ratio between the received rewards and the 
total expected rewards during the operational process. For 
example, if the metric is set to be 25%, the SP will monitor the 
controller performance, and in the case of 25% failure, the SP 
will send a signal to turn off the agent for safety concerns.  

B. Save Energy  

Save Energy (SE) enables the agent to be in an idle mode 
when the environment is within the desired region, but it 
switches the agent to active mode when the environment 
(system/plant) needs to be controlled. It determines its state is 
by constantly monitoring the environment’s observations. The 
policy has the highest computation operation due to its layer 
analysis starting with the inputs (observations) and continuing 
to output (actions). Therefore, when the agent is in an idle 
mode, the policy will not receive observations or give actions, 
which will reduce the controller power consumption. In the 
meantime, the disturbances’ actions are the ones who change 
the environmental states. Research on idle/sleeping modes is 
ongoing in the embedded system field. Some experimental 
academic research showed a power consumption reduction of 
48%-80% when an embedded system was in idle/sleeping mode 
[14]. 

 

 

Fig. 3 Active and idle illustration 

V. EXPERIMENTAL SETUP  

The experiment was designed to control temperature of water 
in a hydroponic system, with the desired range being between 
18 °C and 26 °C. The experiment was divided into three stages: 
setting up the RL environment; training the agent; and testing 
and evaluating the model. All these steps were carried out with 
the help of OpenAI Gym toolkit [15] and Stable-Baselines3 
[16] using Python. 

A. Creating the RL - Environment  

The RL environment can be real or simulated. In this study, 
the simulated environment was chosen because it gives the 
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ability to trial and train in a safe and cost-effective manner. The 
main goal of the environment is to be responsive to the agent’s 
actions and to external disturbances. Based on those conditions, 
it gives new observations and rewards. Class hydroponic (Env) 
is the created environment, and it was tested for one episode for 
120-time steps (minutes) with random actions to observe the 
environmental response.  

B. Training the Agent  

Training was performed via Stable-Baselines3 [16] using the 
PPO algorithm [13]. The agent was trained for a total of 
100,000 timesteps with random initial conditions. If the 
temperature falls within the desired temperature range, the 
agent will be rewarded positively (+1); otherwise, it will be 
penalized negatively (-1). The training mechanism allows the 
agent to learn how to make the right decisions while performing 
actions in the environment to maximize the cumulative positive 

rewards. 
 

 

Fig. 4 Environment Response for Random Actions 

 

  

Fig. 5 Training Process 
 

 

Fig. 6 Performance Test without Disturbance 
 

In Fig. 5 (a), at the early training process, the rewards mean 
is still negative -34.7. In Fig. 5 (b), after 10240 timesteps, the 
agent now is getting positive rewards, +10.2. Fig. 5 (c) is the 
last time steps where the mean reward is +109.  

C. Testing and Evaluating  

First, the model was tested with no disturbances to make sure 

that the agent is following the desired performance (Fig. 6).  
To ensure that the model is robust and resilient, it was 

evaluated with external disturbances (change between +1, -1 °C 
randomly at each time step) starting with low initializations 
(cold water) (Fig. 7 (a)) and progressing to high initializations 
(hot water) (Fig. 7 (b)). 

VI. EVALUATING SAFE PERFORMANCE 

SP will track the controller performance by monitoring the 
rewards received from the environment. For this hydroponic 
case study, the reward is between -120 and +120. For example, 
if the temperature falls within the root zone temperature for the 
whole operation time, the cumulative rewards would be +120. 
Experimentally, 50% were selected to verify SP functionality 
with high level of disturbances. So, if the agent is unsuccessful 
in controlling the environment for 50% of the operation (i.e., it 
allows the water temperature to fall outside of the root 
temperature region for any reason out of the controller’s ability, 
such as rough external disturbances or hardware constraints), 
the controller and the hardware will be turned off for safety 
concerns.  
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Fig. 7 Performance Test with Disturbances 
 

 

Fig. 8 SP Performance Test 
 

Fig. 8 (a) indicates that the controller could not achieve the 
desired temperature zone. Thus, after 60 minutes out of 120 
minutes with unsuccessful achievements, it turned off. Fig. 8 
(b) indicates that the shutdown occurred after 73 minutes 
because it counted some successful performances between 58 
and 65, after which the temperature rose far beyond the desired 
region. When the controller begins unsuccessfully controlling 
the temperature due to rough disturbance and/or weak 
equipment capabilities, the SP plays its role by either turning 
off the agent (such as in this case study) or sending a 
notification to the user, designer, or manufacturing company. 
That is all automatically performed as part of the control system 
and does not need external devices such as fuses, sensors, or 
actuators.  

VII. EVALUATING SAFE ENERGY  

SE will let the agent stay in an idle mode automatically when 
there is no need to let the policy do high computations. For the 
hydroponic study, when the temperature is inside the root 
temperature zone, the agent will be in an idle mode. SE was 
tested without disturbances (Fig. 9) and with disturbances (Fig. 
10) beginning with random initializations. 

VIII. AVERAGE RESULT  

In this study, 1000 episodes (cases) were performed on the 
proposed RL model. Each episode represents a different case, 
and each has an initial temperature that was chosen at random 
between 5 °C and 50 °C with different disturbances between 
(+1 and -1) and (+2 and -2) °C in each time step (minute). The 
goal of the model is to stay in the desired root zone region 
(between 18 °C and 26 °C) while monitoring the agent success/ 
unsuccess and the energy consumption via the SP and SE. The 
disturbances manifest themselves as changes in external 
temperature, hardware constraints, or any type of noise that 
interferes with controller operation.  

Tables I and II represent the average results considering two 
types of disturbances: (+1, -1) and (+2, -2) °C in each time step 
(minute), with different unsuccessful metrics (25%, 50%, 75%). 
The turn off cases are out of the total cases (1000), and the 
active/idle mode percentage is out of the total operation time 
for these 1000 cases. Given that the idle mode could consume 
50% less energy than normal operation [14], [17], [18], the 
energy saving is estimated as 50% of the idle mode operation.  
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Fig. 9 SE Performance Test without Disturbances 
 

 

Fig. 10 SE Performance Test with Disturbances 
 

TABLE I 
MODEL PERFORMANCE FOR 1,000 CASES WITH DISTURBANCE CHANGE IN 

TEMPERATURE BETWEEN (+1, -1) EACH TIME STEP 

 25% 50% 75% 

Turn off cases 148 1 0 

Safety improvement 14.8% 0.1% 0% 

Active mode 18.9% 17.9% 18.3% 

Idle mode 81.1% 82.1% 81.7% 

Energy saving 40.5% 41.05% 40.85% 

 
TABLE II 

MODEL PERFORMANCE FOR 1,000 CASES WITH DISTURBANCE CHANGE IN 

TEMPERATURE BETWEEN (+2, -2) EACH TIME STEP 

 25% 50% 75% 

Turn off cases 156 5 2 

Safety improvement 15.6% 0.5% 0.2% 

Active mode 28.4% 28.65% 28.2% 

Idle mode 71.6% 71.35% 71.8% 

Energy saving 35.8% 35.6% 35.9% 

 

IX. CONCLUSION AND FUTURE RESEARCH 

This paper represents a RL model for control applications 
that can be used to improve safety and reduce energy 
consumption. Temperature control for a hydroponic system was 
provided to illustrate the model’s concept and techniques.  

Among average results of 1000 episodes, the model showed 
up to 15% improved safety and 35%-40% energy saving, 
depending on the initialization parameters such as the initial 
temperature, unsuccessful metric percentage, and the roughness 
level of the disturbance. This model can be adjusted as needed 
based on the criticality of the application. 

Other methods in the literature [6]-[9] to improve safety and 
energy efficiency have used external devices to the control 
system like fuses, sensors, or IoT technologies. However, the 
present approach integrates Safe Performance (SP) and Save 
Energy (SE) inside the control system, which all operate 
intelligently in synchronous processes. Therefore, this model 
reduces the total costs of hardware. Also, since it uses fewer 
electronic devices, it is more compatible and simpler to 
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manufacture and integrated into complex systems. 
As future research, other approaches for ensuring safety, 

such as safe RL learning or reference governors, can be added 
to the model in the future to make it more robust for RL control 
critical applications. This RL model control can also be applied 
to any control system application with a desired zone region, 
such as continuous glucose monitoring for diabetic patients. 
Furthermore, the model can be applied on real-world physical 
systems in addition to simulations.  
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