Search results for: Finite element modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3733

Search results for: Finite element modeling

1903 A Study on the Developing Method of the BIM (Building Information Modeling) Software Based On Cloud Computing Environment

Authors: Byung-Kon Kim

Abstract:

According as the Architecture, Engineering and Construction (AEC) Industry projects have grown more complex and larger, the number of utilization of BIM for 3D design and simulation is increasing significantly. Therefore, typical applications of BIM such as clash detection and alternative measures based on 3-dimenstional planning are expanded to process management, cost and quantity management, structural analysis, check for regulation, and various domains for virtual design and construction. Presently, commercial BIM software is operated on single-user environment, so initial cost is so high and the investment may be wasted frequently. Cloud computing that is a next-generation internet technology enables simple internet devices (such as PC, Tablet, Smart phone etc) to use services and resources of BIM software. In this paper, we suggested developing method of the BIM software based on cloud computing environment in order to expand utilization of BIM and reduce cost of BIM software. First, for the benchmarking, we surveyed successful case of BIM and cloud computing. And we analyzed needs and opportunities of BIM and cloud computing in AEC Industry. Finally, we suggested main functions of BIM software based on cloud computing environment and developed a simple prototype of cloud computing BIM software for basic BIM model viewing.

Keywords: Construction IT, BIM(Building Information Modeling), Cloud Computing, BIM Service Based Cloud Computing, Viewer Based BIM Server, 3D Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4089
1902 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba

Abstract:

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
1901 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
1900 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
1899 Modeling the Effects of Type and Intensity of Selective Logging on Forests of the Amazon

Authors: Theodore N.S. Karfakis, Anna Andrade, Carolina Volkmer-Castilho, Dennis R. Valle, Eric Arets, Paul van Gardingen

Abstract:

The aim of the work presented here was to either use existing forest dynamic simulation models or calibrate a new one both within the SYMFOR framework with the purpose of examining changes in stand level basal area and functional composition in response to selective logging considering trees > 10 cm d.b.h for two areas of undisturbed Amazonian non flooded tropical forest in Brazil and one in Peru. Model biological realism was evaluated for forest in the undisturbed and selectively logged state and it was concluded that forest dynamics were realistically represented. Results of the logging simulation experiments showed that in relation to undisturbed forest simulation subject to no form of harvesting intervention there was a significant amount of change over a 90 year simulation period that was positively proportional to the intensity of logging. Areas which had in the dynamic equilibrium of undisturbed forest a greater proportion of a specific ecological guild of trees known as the light hardwoods (LHW’s) seemed to respond more favorably in terms of less deviation but only within a specific range of baseline forest composition beyond which compositional diversity became more important. These finds are in line partially with practical management experience and partiality basic systematics theory respectively.

Keywords: Amazonbasin, ecological species guild, selective logging, simulation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
1898 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, Optical Forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
1897 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: Additive manufacturing, fused deposition modeling, raster angle, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1896 Sensitivity Computations of Time Relaxation Model with an Application in Cavity Computation

Authors: Monika Neda, Elena Nikonova

Abstract:

We present a numerical study of the sensitivity of the so called time relaxation family of models of fluid motion with respect to the time relaxation parameter χ on the two dimensional cavity problem. The goal of the study is to compute and compare the sensitivity of the model using finite difference method (FFD) and sensitivity equation method (SEM).

Keywords: Sensitivity, time relaxation, deconvolution, Navier- Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
1895 A Model Driven Based Method for Scheduling Analysis and HW/SW Partitioning

Authors: Yessine Hadj Kacem, Adel Mahfoudhi, Hedi Tmar, Mohamed Abid

Abstract:

Unified Modeling Language (UML) extensions for real time embedded systems (RTES) co-design, are taking a growing interest by a great number of industrial and research communities. The extension mechanism is provided by UML profiles for RTES. It aims at improving an easily-understood method of system design for non-experts. On the other hand, one of the key items of the co- design methods is the Hardware/Software partitioning and scheduling tasks. Indeed, it is mandatory to define where and when tasks are implemented and run. Unfortunately the main goals of co-design are not included in the usual practice of UML profiles. So, there exists a need for mapping used models to an execution platform for both schedulability test and HW/SW partitioning. In the present work, test schedulability and design space exploration are performed at an early stage. The proposed approach adopts Model Driven Engineering MDE. It starts from UML specification annotated with the recent profile for the Modeling and Analysis of Real Time Embedded systems MARTE. Following refinement strategy, transformation rules allow to find a feasible schedule that satisfies timing constraints and to define where tasks will be implemented. The overall approach is experimented for the design of a football player robot application.

Keywords: MDE, UML profile, scheduling analysis, HW/SW partitioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1894 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait

Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh

Abstract:

In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.

Keywords: GPS based household surveys, transportation infrastructure, origin-destination trip matrices, traffic forecasts, transportation demand modeling, travel behavior patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1893 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: Complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1892 Hydrogeological Risk and Mining Tunnels: the Fontane-Rodoretto Mine Turin (Italy)

Authors: Paola Gattinoni, Laura Scesi, Elena Cerino Adbin, Daniele Cremonesi

Abstract:

The interaction of tunneling or mining with groundwater has become a very relevant problem not only due to the need to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems, but also to safeguard water resources from impoverishment and pollution risk. Therefore it is very important to forecast the drainage processes (i.e., the evaluation of drained discharge and drawdown caused by the excavation). The aim of this study was to know better the system and to quantify the flow drained from the Fontane mines, located in Val Germanasca (Turin, Italy). This allowed to understand the hydrogeological local changes in time. The work has therefore been structured as follows: the reconstruction of the conceptual model with the geological, hydrogeological and geological-structural study; the calculation of the tunnel inflows (through the use of structural methods) and the comparison with the measured flow rates; the water balance at the basin scale. In this way it was possible to understand what are the relationships between rainfall, groundwater level variations and the effect of the presence of tunnels as a means of draining water. Subsequently, it the effects produced by the excavation of the mining tunnels was quantified, through numerical modeling. In particular, the modeling made it possible to observe the drawdown variation as a function of number, excavation depth and different mines linings.

Keywords: Groundwater, Italy, numerical model, tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
1891 Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices
1890 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: Bearing capacity, design, Installation, numerical analysis, settlement, stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
1889 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
1888 The Elements of the Crisis Concept

Authors: Marie Mikušová, Petr Šnapka, Viktorie Janečková

Abstract:

As every system conceptions the concept of crisis is based on the system of interdependent elements. These dialectic elements occur in a majority of definitions even though called differently. For further theoretical searching but also for practical utilization it is necessary to understand these elements. The paper stresses that the concept of crisis is ambiguous. There are identified and explained the elements that are generally found in most crises (disruption, precondition, triggers etc).

Keywords: Concept, crisis, element

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1887 Environmental Modeling of Storm Water Channels

Authors: L. Grinis

Abstract:

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.

Keywords: Baffles, open channel, physical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
1886 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
1885 Difference in Psychological Well-Being Based On Comparison of Religions: A Case Study in Pekan District, Pahang, Malaysia

Authors: Amran Hassan, Fatimah Yusooff, Khadijah Alavi

Abstract:

The psychological well-being of a family is a subjective matter for evaluation, all the more when it involves the element of religions, whether Islam, Christianity, Buddhism or Hinduism. Each of these religions emphasises similar values and morals on family psychological well-being. This comparative study is specifically to determine the role of religion on family psychological well-being in Pekan district, Pahang, Malaysia. The study adopts a quantitative and qualitative mixed method design and considers a total of 412 samples of parents and children for the quantitative study, and 21 samples for the qualitative study. The quantitative study uses simple random sampling, whereas the qualitative sampling is purposive. The instrument for quantitative study is Ryff’s Psychological Well-being Scale and the qualitative study involves the construction of a guidelines protocol for in-depth interviews of respondents. The quantitative study uses the SPSS version .19 with One Way Anova, and the qualitative analysis is manual based on transcripts with specific codes and themes. The results show nonsignificance, that is, no significant difference among religions in all family psychological well-being constructs in the comparison of Islam, Christianity, Buddhism and Hinduism, thereby accepting a null hypothesis and rejecting an alternative hypothesis. The qualitative study supports the quantitative study, that is, all 21 respondents explain that no difference exists in psychological wellbeing in the comparison of teachings in all the religious mentioned. These implications may be used as guidelines for government and non-government bodies in considering religion as an important element in family psychological well-being in the long run. 

Keywords: Psychological well-being, comparison of religions, family, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
1884 The Comparison of Finite Difference Methods for Radiation Diffusion Equations

Authors: Ren Jian, Yang Shulin

Abstract:

In this paper, the difference between the Alternating Direction Method (ADM) and the Non-Splitting Method (NSM) is investigated, while both methods applied to the simulations for 2-D multimaterial radiation diffusion issues. Although the ADM have the same accuracy orders with the NSM on the uniform meshes, the accuracy of ADM will decrease on the distorted meshes or the boundary of domain. Numerical experiments are carried out to confirm the theoretical predication.

Keywords: Alternating Direction Method, Non-SplittingMethod, Radiation Diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
1883 Transforming Construction: Integrating Off-Site Techniques and Advanced Technologies

Authors: Layla Mujahed, Gang Feng, Jianghua Wang

Abstract:

An increasing number of construction projects are adopting off-site construction techniques over traditional methods to address longstanding challenges. This research paper explores the integration of design for manufacture and assembly (DfMA), modern methods of construction (MMC), and building information modeling (BIM) within the construction industry. This study employs a mixed-methods approach, using case studies and a review of the existing literature, to examine the role and combined application of each methodology in building projects of varying scales and durations. The study focuses on application mechanisms, stakeholder engagement, knowledge sharing, feedback, and performance metrics to explore the benefits, challenges, and transformative potential of integrating these methodologies. The findings indicate that the synergy among DfMA, MMC, and BIM significantly improves project efficiency, cost reduction, and overall quality. Standardization, increased collaboration among stakeholders, and the adoption of advanced technologies are also highlighted as necessary considerations to fully realize the benefits of this integration. The paper concludes with practical recommendations for industry practitioners seeking to efficiently implement these integrated approaches.

Keywords: BIM, building information modeling, case study, DfMA, design for manufacture and assembly, MMC, modern methods of construction, prefabrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27
1882 On Submaximality in Intuitionistic Topological Spaces

Authors: Ahmet Z. Ozcelik, Serkan Narli

Abstract:

In this study, a minimal submaximal element of LIT(X) (the lattice of all intuitionistic topologies for X, ordered by inclusion) is determined. Afterwards, a new contractive property, intuitionistic mega-connectedness, is defined. We show that the submaximality and mega-connectedness are not complementary intuitionistic topological invariants by identifying those members of LIT(X) which are intuitionistic mega-connected.

Keywords: Intuitionistic set; intuitionistic topology;intuitionistic submaximality and mega-connectedness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
1881 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology

Authors: Anjian Chen, Joseph C. Chen

Abstract:

This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.

Keywords: Additive manufacturing, fused deposition modeling, surface roughness, Six-Sigma, Taguchi method, 3D printing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
1880 Dynamic Modeling of Intelligent Air-Cushion Tracked Vehicle for Swamp Peat

Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda

Abstract:

Modeling of the dynamic behavior and motion are renewed interest in the improved tractive performance of an intelligent air-cushion tracked vehicle (IACTV). This paper presents a new dynamical model for the forces on the developed small scale intelligent air-cushion tracked vehicle moving over swamp peat. The air cushion system partially supports the 25 % of vehicle total weight in order to make the vehicle ground contact pressure 7 kN/m2. As the air-cushion support system can adjust automatically on the terrain, so the vehicle can move over the terrain without any risks. The springdamper system is used with the vehicle body to control the aircushion support system on any undulating terrain by making the system sinusoidal form. Experiments have been carried out to investigate the relationships among tractive efficiency, slippage, traction coefficient, load distribution ratio, tractive effort, motion resistance and power consumption in given terrain conditions. Experiment and simulation results show that air-cushion system improves the vehicle performance by keeping traction coefficient of 71% and tractive efficiency of 62% and the developed model can meet the demand of transport efficiency with the optimal power consumption.

Keywords: Air-cushion system, ground contact pressure, slippage, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
1879 Supply Chain Resilience Triangle: The Study and Development of a Framework

Authors: M. Bevilacqua, F. E. Ciarapica, G. Marcucci

Abstract:

Supply Chain Resilience has been broadly studied during the last decade, focusing the research on many aspects of Supply Chain performance. Consequently, different definitions of Supply Chain Resilience have been developed by the research community, drawing inspiration also from other fields of study such as ecology, sociology, psychology, economy et al. This way, the definitions so far developed in the extant literature are therefore very heterogeneous, and many authors have pointed out a lack of consensus in this field of analysis. The aim of this research is to find common points between these definitions, through the development of a framework of study: the Resilience Triangle. The Resilience Triangle is a tool developed in the field of civil engineering, with the objective of modeling the loss of resilience of a given structure during and after the occurrence of a disruption such as an earthquake. The Resilience Triangle is a simple yet powerful tool: in our opinion, it can summarize all the features that authors have captured in the Supply Chain Resilience definitions over the years. This research intends to recapitulate within this framework all these heterogeneities in Supply Chain Resilience research. After collecting a various number of Supply Chain Resilience definitions present in the extant literature, the methodology approach provides a taxonomy step with the scope of collecting and analyzing all the data gathered. The next step provides the comparison of the data obtained with the plotting of a disruption profile, in order to contextualize the Resilience Triangle in the Supply Chain context. The tool and the results developed in this research will allow to lay the foundation for future Supply Chain Resilience modeling and measurement work.

Keywords: Supply chain resilience, resilience definition, supply chain resilience triangle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
1878 Release of Elements in Bottom Ash and Fly Ash from Incineration of Peat- and Wood-Residues using a Sequential Extraction Procedure

Authors: Risto Poykio, Kati Manskinen, Olli Dahl, Mikko Mäkelä, Hannu Nurmesniemi

Abstract:

When the results of the total element concentrations using USEPA method 3051A are compared to the sequential extraction analyses (i.e. the sum of fractions BCR1, BCR2 and BRC3), it can be calculated that the recovery values of elements varied between 56.8-% and 69.4-% in the bottom ash, and between 11.3-% and 70.9-% in the fly ash. This indicates that most of the elements in the ashes do not occur as readily soluble forms.

Keywords: Ash, BCR, leaching, solubility, waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1877 Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime

Authors: Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Abstract:

In this work, we first give in what fields Fp, the cubic root of unity lies in F*p, in Qp and in K*p where Qp and K*p denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves y2 ≡ x3 +a3 modulo p, for p ≡ 1 (mod 6) is prime.

Keywords: Elliptic curves over finite fields, quadratic residue, cubic residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
1876 Analytical Model Based Evaluation of Human Machine Interfaces Using Cognitive Modeling

Authors: Belkacem Chikhaoui, Helene Pigot

Abstract:

Cognitive models allow predicting some aspects of utility and usability of human machine interfaces (HMI), and simulating the interaction with these interfaces. The action of predicting is based on a task analysis, which investigates what a user is required to do in terms of actions and cognitive processes to achieve a task. Task analysis facilitates the understanding of the system-s functionalities. Cognitive models are part of the analytical approaches, that do not associate the users during the development process of the interface. This article presents a study about the evaluation of a human machine interaction with a contextual assistant-s interface using ACTR and GOMS cognitive models. The present work shows how these techniques may be applied in the evaluation of HMI, design and research by emphasizing firstly the task analysis and secondly the time execution of the task. In order to validate and support our results, an experimental study of user performance is conducted at the DOMUS laboratory, during the interaction with the contextual assistant-s interface. The results of our models show that the GOMS and ACT-R models give good and excellent predictions respectively of users performance at the task level, as well as the object level. Therefore, the simulated results are very close to the results obtained in the experimental study.

Keywords: HMI, interface evaluation, Analytical evaluation, cognitivemodeling, user modeling, user performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
1875 Modeling and Analysis for Effective Capacity of a Cross-Layer Optimized Wireless Networks

Authors: Reham A. El-mayet, Hesham M. El-Badawy, Salwa H. Elramly

Abstract:

New generation mobile communication networks have the ability of supporting triple play. In order that, Orthogonal Frequency Division Multiplexing (OFDM) access techniques have been chosen to enlarge the system ability for high data rates networks. Many of cross-layer modeling and optimization schemes for Quality of Service (QoS) and capacity of downlink multiuser OFDM system were proposed. In this paper, the Maximum Weighted Capacity (MWC) based resource allocation at the Physical (PHY) layer is used. This resource allocation scheme provides a much better QoS than the previous resource allocation schemes, while maintaining the highest or nearly highest capacity and costing similar complexity. In addition, the Delay Satisfaction (DS) scheduling at the Medium Access Control (MAC) layer, which allows more than one connection to be served in each slot is used. This scheduling technique is more efficient than conventional scheduling to investigate both of the number of users as well as the number of subcarriers against system capacity. The system will be optimized for different operational environments: the outdoor deployment scenarios as well as the indoor deployment scenarios are investigated and also for different channel models. In addition, effective capacity approach [1] is used not only for providing QoS for different mobile users, but also to increase the total wireless network's throughput.

Keywords: Cross-layer, effective capacity, LTE, OFDM, QoS, resource allocation, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
1874 A New Method to Solve a Non Linear Differential System

Authors: Seifedine Kadry

Abstract:

In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.

Keywords: Continuation Method, Newton Method, Finite Difference Method, Numerical Analysis and Non-Linear partial Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383