The Comparison of Finite Difference Methods for Radiation Diffusion Equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33103
The Comparison of Finite Difference Methods for Radiation Diffusion Equations

Authors: Ren Jian, Yang Shulin

Abstract:

In this paper, the difference between the Alternating Direction Method (ADM) and the Non-Splitting Method (NSM) is investigated, while both methods applied to the simulations for 2-D multimaterial radiation diffusion issues. Although the ADM have the same accuracy orders with the NSM on the uniform meshes, the accuracy of ADM will decrease on the distorted meshes or the boundary of domain. Numerical experiments are carried out to confirm the theoretical predication.

Keywords: Alternating Direction Method, Non-SplittingMethod, Radiation Diffusion.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079088

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424

References:


[1] P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Volume I, Finite Difference Methods (Part 1), Splitting and Alternating Direction Methods, G.I. Marchuk (North-Holland, 1990).
[2] Deyuan Li, Hongshou Shui, Minjun Tang, On the finite difference scheme of two-dimensional parabolic equation in a non-rectangular mesh, J. Numer. Methods Comput. Appl. 4 (1980) 217.
[3] Guangwei Yuan, Zhiqiang Sheng, Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes. J. Comput. Phys. (2007) 224.