Classification of the Bachet Elliptic Curves $y^2 = x^3 + a^3$ in \mathbf{F}_p , where $p \equiv 1 \, (mod \, 6)$ is Prime

Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Abstract—In this work, we first give in what fields \mathbf{F}_p , the cubic root of unity lies in \mathbf{F}_p^* , in Q_p and in K_p^* where Q_p and K_p^* denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves $y^2 \equiv x^3 + a^3$ modulo p, for $p \equiv 1 \pmod{6}$ is prime.

Keywords—Elliptic curves over finite fields, quadratic residue, cubic residue.

I. Introduction

Let $w\neq 1$ be the cubic root of unity. w appears in many calculations regarding elliptic curves, e.g.[2], [3]. The authors used it to find rational points on Bachet elliptic curves $y^2=x^3+a^3$ in \mathbf{F}_p , where \mathbf{F}_p is a field of characteristic >3.

In [9], starting with a conjecture from 1952 of Dénes which is a variant of Fermat-Wiles theorem, Merel illustrates the way in which Frey elliptic curves have been used by Taylor, Ribet, Wiles and the others in the proof of Fermat-Wiles theorem. Serre, in [10], gave a lower bound for the Galois representations on elliptic curves over the field Q of rational points. In the case of a Frey curve, the conductor N of the curve is given by the help of the constants in the abc conjecture. In [8], Ono recalls a result of Euler, known as Euler's concordant forms problem, about the classification of those pairs of distinct non-zero integers M and N for which there are integer solutions (x,y,t,z) with $xy \neq 0$ to $x^2 + My^2 = t^2$ and $x^2 + Ny^2 = z^2$. When M = -N, this becomes the congruent number problem, and when M = 2N, by replacing x by x - N in E(2N, N), a special form of the Frey elliptic curves is obtained as $y^2 = x^3 - N^2x$. Using Tunnell's conditional solution to the congruent number problem using elliptic curves and modular forms, Ono studied the elliptic curve $y^2 = x^3 + (M+N)x^2 + MNx$ denoted by $E_Q(M,N)$ over Q. He classified all the cases and hence reduced Euler's problem to a question of ranks. In [6], Parshin obtaines an inequality to give an effective bound for the height of rational points on a curve. In [7], the problem of boundedness of torsion for elliptic curves over quadratic fields is settled.

Nazli Yildiz İkikardes is with the Balikesir University, Department of Mathematics, Faculty of Science, Balkesir-TURKEY. email: ny-ildiz@balikesir.edu.tr. Gokhan Soydan, Musa Demirci, Ismail Naci Cangul are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: gsoydan@uludag.edu.tr, mdemirci@uludag.edu.tr, cangul@uludag.edu.tr. This work was supported by the research fund of Uludag University project no: F-2004/40.

If F is a field, then an elliptic curve over F has, after a change of variables, a form

$$y^2 = x^3 + Ax + B$$

where A and $B \in F$ with $4A^3 + 27B^2 \neq 0$ in F. Here $D = -16\left(4A^3 + 27B^2\right)$ is called the discriminant of the curve. Elliptic curves are studied over finite and infinite fields. Here we take F to be a finite prime field F_p with characteristic p > 3. Then $A, B \in F_p$ and the set of points $(x,y) \in F_p \times F_p$, together with a point o at infinity is called the set of F_p -rational points of E on F_p and is denoted by $E(F_p)$. N_p denotes the number of rational points on this curve. It must be finite.

In fact one expects to have at most 2p+1 points (together with o)(for every x, there exist a maximum of 2 y's). But not all elements of F_p have square roots. In fact only half of the elements of F_p have a square root. Therefore the expected number is about p+1.

Here we shall deal with Bachet elliptic curves $y^2 = x^3 + a^3$ modulo p. Some results on these curves have been given in [2], and [3].

A historical problem leading to Bachet elliptic curves is that how one can write an integer as a difference of a square and a cube. In another words, for a given fixed integer c, search for the solutions of the Diophantine equation $y^2 - x^3 = c$. This equation is widely called as Bachet or Mordell equation. This is because L. J. Mordell, in twentieth century, made a lot of advances regarding this and some other similar equations. The existance of duplication formula makes this curve interesting. This formula was found in 1621 by Bachet. When (x, y)is a solution to this equation where $x, y \in Q$, it is easy to show that $\left(\frac{x^4-8cx}{4y^2}, \frac{-x^6-20cx^3+8c^2}{8y^3}\right)$ is also a solution for the same equation. Furthermore, if (x,y) is a solution such that $xy \neq 0$ and $c \neq 1, -432$, then this leads to infinitely many solutions, which could not proven by Bachet. Hence if an integer can be stated as the difference of a cube and a square, this could be done in infinitely many ways. For example if we start by a solution (3,5) to $y^2 - x^3 = -2$, by applying duplication formula, we get a series of rational solutions $(3,5), (\frac{129}{10^2}, \frac{-383}{10^3}), (\frac{2340922881}{7660^2}, \frac{113259286337292}{7660^3}), \dots$

Here we give a classification of Bachet elliptic curves for all values of a between 1 and p-1. In doing these, we often need to know when w is a quadratic or cubic residue.

Let Q_p and K_p denote the set of quadratic and cubic residues, respectively.

II. The Cubic Root of Unity Modulo $P \equiv 1 \pmod{6}$ is Prime

When a prime p is congruent to 1 modulo 6, we have a lot of nice number theoretical results concerning cubic root w of unity. First, we can say when w is an integer modulo p.

Lemma 2.1: The cubic root of unity $w = \frac{-1+\sqrt{-3}}{2}$ lies in \mathbf{F}_p^* if and only if $p \equiv 1 \pmod{6}$ is prime.

Proof: Let $w=\frac{-1+\sqrt{-3}}{2}=\frac{-1+\sqrt{3}i}{2}$. We want to show that $w\in \mathbf{F}_p^*=\mathbf{F}_p\backslash\{0\}$.

First, we will show that $\sqrt{-3} \in \mathbf{F}_p^*$. To do this, we will show the existence of a $t \in \mathbf{Z}_p$ so that $-3 \equiv t^2(modp)$. In other words, we need to show that $(\frac{-3}{p}) = +1$, where $(\frac{\cdot}{2})$ denotes the Legendre symbol. Now

and as $p \equiv 1 \pmod{6}$, we have $(\frac{p}{3}) = (\frac{1}{3}) = +1$ and p-1 even, implying $(\frac{-3}{p}) = +1$.

Secondly, (2,p)=1 and 2 has a multiplicative inverse u in \mathbf{F}_p^* . Then $2.u \equiv 1 (modp)$ and $\frac{-1+\sqrt{-3}}{2} = u.(-1+\sqrt{-3})$ and as $\sqrt{-3}$ and hence $-1+\sqrt{-3}$ lies in \mathbf{F}_p , $w \in \mathbf{F}_p^*$. Going backwards, we obtain the result.

The following result gives us the values of p where $w \in \mathbf{Q}_p$. Lemma 2.2: $w \in Q_p \Leftrightarrow p \equiv 1 \pmod{6}$ is prime.

Proof:

$$w \in Q_p \Leftrightarrow \exists t \in U_p \text{ such that } t^2 \equiv w(modp)$$

 $\Leftrightarrow \exists t \in U_p \text{ such that } t^6 \equiv w^3 \equiv 1(modp).$

Also by Fermat's little theorem, we have $t^{p-1} \equiv 1 \pmod{p}$ for $t \in U_p$. Then $6 \mid (p-1)$ and $p \equiv 1 \pmod{6}$.

For example, w = 4, 9, 11, 5, ... for p = 7, 13, 19, 31, ..., respectively.

Now we give the following result to determine for what prime values of p, w is a cubic residue modulo p. If $w \equiv 0 (modp)$, then $\frac{-1+\sqrt{-3}}{2} \equiv 0 (modp)$ giving $4 \equiv 0 (modp)$, a contradiction. So $w \in K_p^*$.

Theorem 2.1: Let w be the cubic root of unity. Then

$$w \in K_n^* \iff p \equiv 1 \pmod{18}$$
.

Proof: $w \in K_p^* \iff \exists b \in U_p \text{ such that } w = b^3 \neq 1,$ where U_p denotes the set of units modulo p.

$$\iff$$
 $\exists b \in U_p \text{ such that } w^3 = b^9 = 1$
 \iff $\exists b \in U_p \text{ such that } \phi(b) = 9.$

But as (b,p)=1, we know by Fermat's little theorem that $b^{p-1}\equiv 1(modp)$. By the definition of order, $9|(p-1)\Longleftrightarrow p=1+9k,\ k\in {\bf Z}.$ As p is prime, k must be even, and by letting $k=2t,\ t\in {\bf Z},$ we get $p=1+18t\equiv 1(mod18)$.

In particular,

Corollary 2.2: Let $p \equiv 1 \pmod{6}$ be prime. Then

a) If $p \equiv 1 (mod 18)$, then all three or none of a, aw and aw^2 lie in K_p^* .

b) If $p \neq 1 \pmod{18}$, then only one of a, aw and aw^2 lies in K_n^* .

Proof: a) Let $p \equiv 1 \pmod{18}$ and let $a \in K_p^*$. Then by theorem 3, $w \in K_p$. As K_p^* is a multiplicative group, the result follows.

If $a \notin K_p^*$, the result similarly follows.

b) Let $p \equiv 1 \pmod{6}$ and $p \neq 1 \pmod{18}$. Then by theorem 3, $w \notin K_p$.

Firstly, assume that $a \in K_p^*$. Then aw and aw^2 do not belong to K_p^* .

Secondly, let $a \notin K_p^*$. Now we first assume that $aw \in K_p$. That is, there exists a $t \in U_p$ such that $aw \equiv t^3 \pmod{p}$. Then $aw^2 \equiv t^3 \cdot w \pmod{p}$. Again by theorem 3, $aw^2 \notin K_p^*$ as $t^3 \in K_p^*$ and $w \notin K_p^*$. Now we finally assume that $aw^2 \in K_p$. Then similarly $aw = aw^2 \cdot w^2 = t^3 w^2 \notin K_p^*$ as $t^3 \in K_p$ and $w^2 \notin K_p^*$.

Similarly,

W, Corollary 2.3: Let $p \equiv 1 \pmod{6}$ be prime and $p \neq 1 \pmod{18}$. Let $a \notin K_p^*$. Then

$$aw^k \in K_p \iff aw^{3-k} \notin K_p^*$$

for k = 1, 2.

III. BACHET ELLIPTIC CURVES MODULO PRIME $p \equiv 1 \pmod{6}$

Now we are ready to use the results obtained in part 2 to give some results regarding Bachet elliptic curves. First

Theorem 3.1: Let $p \equiv 1 \pmod{6}$ be prime. There are three values of x, for y = 0, on the elliptic curve $y^2 \equiv x^3 + a^3 \pmod{p}$, having sum equal to $0 \pmod{p}$.

Proof: For y=0, $x^3\equiv -a^3 \pmod{p}$ has solutions x=-a,-aw and $-aw^2$. The result then follows.

Theorem 3.2: Let $p \equiv 1 \pmod{18}$ be prime. If $a \in K_p^*$ then three values of x obtained for y = 0 on the elliptic curve $y^2 \equiv x^3 + a^3 \pmod{p}$ lie in K_p^* .

If $a \notin K_p^*$, then none of the three values of x obtained for y = 0 on the elliptic curve $y^2 \equiv x^3 + a^3 \pmod{p}$ lie in K_p^* .

Proof: For y = 0, $x^3 \equiv -a^3 \pmod{p}$ has solutions x = -a, -aw and $-aw^2$. The result then follows.

Also we have,

Theorem 3.3: Let $p \equiv 1 \pmod{6}$ be prime. For $a \in \mathbf{F}_p^*$, there are $\frac{p-1}{3}$ elliptic curves $y^2 \equiv x^3 + a^3 \pmod{p}$.

Proof: For a fixed value of a between 1 and p-1, we know that we obtain the same value of y for x=a, x=aw and $x=aw^2$. Therefore the p-1 values of a can be grouped into $\frac{p-1}{3}$ groups each consisting of three values of a.

Theorem 3.4: Let $p \equiv 1 \pmod{18}$ be prime. If $a \in K_p^*$, then there are $\frac{p-1}{9}$ elliptic curves $y^2 \equiv x^3 + a^3 \pmod{p}$.

Proof: Let $p \equiv 1 \pmod 6$ be prime. We know by theorem 8 that there are $\frac{p-1}{3}$ elliptic curves $y^2 \equiv x^3 + a^3 \pmod p$ for $a \in \mathbf{F}_p^*$. If also $p \equiv 1 \pmod 9$, (that is $p \equiv 1 \pmod 18$) by the Chinese remainder theorem) then we can group these $\frac{p-1}{3}$ values of a into groups of three, consisting of $\{a, aw, aw^2\}$ for $a \in K_p^*$. Therefore when $p \equiv 1 \pmod 18$, there are $\frac{p-1}{9}$ sets of the values of a, for $a \in K_p^*$.

Example 3.1: Let p=37. Then $K_{37}^*=\{1,6,8,10,11,14,23,26,27,29,31,36\}$. Here $w=26\in \mathbf{F}_{37}^*$

by lemma 1 and $w \in K_{37}^*$ by theorem 3. Then the $\frac{37-1}{9} = 4$ sets of the values of a can be obtained as follows:

```
 \{a = 1, aw = 26, aw^2 = 10\}   \{a = 6, aw = 8, aw^2 = 23\}   \{a = 11, aw = 27, aw^2 = 36\}   \{a = 14, aw = 31, aw^2 = 29\}
```

One obtains the same elliptic curve for each of three elements a, aw, aw^2 in one of these sets.

We know by theorem 8 that there are $\frac{p-1}{3}$ elliptic curves for $a \in \mathbf{F}_p^*$. Now we have

Theorem 3.5: Let $p \equiv 1 \pmod{18}$ be prime. For y = 0, there are three points with $x \in K_p^*$, on the $\frac{p-1}{9}$ of the $\frac{p-1}{3}$ curves appearing for each triple of elements a, aw, aw^2 .

Let $p \equiv 1 \pmod{6}$ be prime and $p \neq 1 \pmod{18}$. Then each of the $\frac{p-1}{3}$ curves consisting of a triple a, aw, aw^2 contains exactly one element of K_p^* .

Proof: The first part follows from Theorem 9.

For the second part, as $p \neq 1 \pmod{18}$, we know that $w \notin K_p^*$ by Theorem 3. By Theorem 8, the values of a between 1 and p-1 are divided into $\frac{p-1}{3}$ sets. By Corollary 4b), only one of a, aw, aw^2 belongs to K_p^* .

Theorem 3.6: Let $p \equiv 1 \pmod{6}$ be prime. Out of these $\frac{p-1}{3}$ curves, exactly $\frac{p-1}{6}$ contains three points (x,0) where $x \in Q_p$, and $\frac{p-1}{6}$ contains three points (x,0) where $x \notin Q_p$.

Proof: For y=0, $x^3\equiv -a^{\frac{1}{3}} (mod \, p)$ and as the number of quadratic and non quadratic residues are equal, we have $\frac{p-1}{6}$ sets consisting of three values of $a\in Q_p$ and $\frac{p-1}{6}$ consisting of three values of $a\notin Q_p$, by Lemma 2.

REFERENCES

- [1] Namlı, D., Cubic Residues , PhD Thesis, Balikesir University, (2001)
- [2] Demirci, M. & Soydan, G. & Cangül, I. N., Rational points on the elliptic curves $y^2 = x^3 + a^3 \pmod{p}$ in F_p where $p \equiv 1 \pmod{6}$ is prime, Rocky J. of Maths, (to be printed).
- [3] Soydan, G. & Demirci, M. & Ikikardeş, N. Y. & Cangül, I. N., *Rational points on the elliptic curves* $y^2 = x^3 + a^3 \pmod{p}$ in F_p where $p \equiv 5 \pmod{6}$ is prime, (submitted).
- [4] Silverman, J. H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986), ISBN 0-387-96203-4.
- [5] Silverman, J. H., Tate, J., Rational Points on Elliptic Curves, Springer-Verlag, (1992), ISBN 0-387-97825-9.
- [6] Parshin, A. N., The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications, Seminaire de Theorie des Nombres, Paris, 1986-87, 299-312, Progr. Math., 75, Birkhauser Boston, MA, 1998.
- [7] Kamienny, S., Some remarks on torsion in elliptic curves, Comm. Alg. 23 (1995), no. 6, 2167-2169.
- [8] Ono, K., Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101-123.
- [9] Merel, L., Arithmetic of elliptic curves and Diophantine equations, Les XXemes Journees Arithmetiques (Limoges, 1997), J. Theor. Nombres Bordeaux 11 (1999), no. 1, 173-200.
- [10] Serre, J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.