%0 Journal Article
	%A Gheida J. Shahrour and  Martin J. Russell
	%D 2015
	%J International Journal of Information and Communication Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 97, 2015
	%T Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement
	%U https://publications.waset.org/pdf/10000639
	%V 97
	%X The 3D body movement signals captured during
human-human conversation include clues not only to the content of
people’s communication but also to their culture and personality.
This paper is concerned with automatic extraction of this information
from body movement signals. For the purpose of this research, we
collected a novel corpus from 27 subjects, arranged them into groups
according to their culture. We arranged each group into pairs and
each pair communicated with each other about different topics.
A state-of-art recognition system is applied to the problems of
person, culture, and topic recognition. We borrowed modeling,
classification, and normalization techniques from speech recognition.
We used Gaussian Mixture Modeling (GMM) as the main technique
for building our three systems, obtaining 77.78%, 55.47%, and
39.06% from the person, culture, and topic recognition systems
respectively. In addition, we combined the above GMM systems with
Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and
40.63% accuracy for person, culture, and topic recognition
Although direct comparison among these three recognition
systems is difficult, it seems that our person recognition system
performs best for both GMM and GMM-SVM, suggesting that intersubject
differences (i.e. subject’s personality traits) are a major
source of variation. When removing these traits from culture and
topic recognition systems using the Nuisance Attribute Projection
(NAP) and the Intersession Variability Compensation (ISVC)
techniques, we obtained 73.44% and 46.09% accuracy from culture
and topic recognition systems respectively.

	%P 311 - 316