Search results for: Floating offshore wind turbine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 795

Search results for: Floating offshore wind turbine

645 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: Statistical energy analysis, damping treatment, noise control, offshore platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
644 CFD Analysis of Natural Ventilation Behaviour in Four Sided Wind Catcher

Authors: M. Hossein Ghadiri, Mohd Farid Mohamed, N. Lukman N. Ibrahim

Abstract:

Wind catchers are traditional natural ventilation systems attached to buildings in order to ventilate the indoor air. The most common type of wind catcher is four sided one which is capable to catch wind in all directions. CFD simulation is the perfect way to evaluate the wind catcher performance. The accuracy of CFD results is the issue of concern, so sensitivity analyses is crucial to find out the effect of different settings of CFD on results. This paper presents a series of 3D steady RANS simulations for a generic isolated four-sided wind catcher attached to a room subjected to wind direction ranging from 0º to 180º with an interval of 45º. The CFD simulations are validated with detailed wind tunnel experiments. The influence of an extensive range of computational parameters is explored in this paper, including the resolution of the computational grid, the size of the computational domain and the turbulence model. This study found that CFD simulation is a reliable method for wind catcher study, but it is less accurate in prediction of models with non perpendicular wind directions.

Keywords: Wind catcher, CFD, natural ventilation, sensitivity study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
643 Computational Conjugate Heat Transfer Analysis of HP Stage Turbine Blade Cooling: Effect of Turbulator Geometry in Helicoidal Cooling Duct

Authors: Chandrakant R Kini, Satish Shenoy B, Yagnesh Sharma N.

Abstract:

In a bid to improve turbine entry temperature for maximizing the thermal efficiency of the HP stage gas turbine blade, an attempt is made in this paper to compare the performance of helicoidal ducted blade cooling with turbulator of different geometric proportion. It is found from analysis that there is significant improvement in cooling characteristics for turbine blade with turbulator geometry having larger e/D ratio. Also it is found from analysis, performance is vastly improved for greater thickness of turbulator geometry.

Keywords: Conjugate heat transfer, turbine blade cooling, helicoidal cooling duct, turbulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
642 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
641 The Relationship between the Architectural Style of the Area’s Residential Waterfront Communities of Bangnoi Floating Bangkhonthi Districts Samut Songkhram Province

Authors: Kunyaphat Thanakunwutthirot

Abstract:

Bangnoi Floating Market located at Bangkhonthi Districts Samut Songkhram Province is a valuable architectural market. The lifestyle of the community's relationship with the living space and the relationship between the architectural style of the area's residential waterfront communities of Bangnoi Floating Bangkhonthi Districts Samut Songkhram Province, which deserves to be preserved. Therefore, this research it helps to know the value of the architectural style of the area's residential waterfront communities of Bangnoi Floating Bangkhonthi Districts SamutSongkhram Province, which deserves to be preserved.

Keywords: Bangnoi Floating Market, floor plan of riverside community architecture, riverside architectural identity, style of riverside community architecture utility space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
640 Numerical Analysis of the Influence of Tip Devices on the Power Coefficient of a VAWT

Authors: Federico Amato, Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini

Abstract:

The aerodynamic performances of vertical axis wind turbines are highly affected by tip vortexes. In the present work, different tip devices are considered and simulated against a baseline rotor configuration, with the aim of identifying the best tip architecture. Three different configurations are tested: winglets, an elliptic termination and an aerodynamic bulkhead. A comparative analysis on the most promising architectures is conducted, focusing also on blade torque evolution during a full revolution of the rotor blade. The most promising technology is concluded to be a well designed winglet.

Keywords: Darrieus Wind Turbine, Tip Devices, Tip Vortexes, Winglet, Elliptic Termination, Aerodynamic Bulkhead

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
639 Sustainable Development in Iranian South Coastal and Islands Using Wind Energy

Authors: Amir Gandomkar

Abstract:

The development incompatible with environment cannot be sustainable. Using renewable energy sources such as solar energy, geothermal energy and wind energy can make sustainable development in a region. Iran has a lot of renewable and nonrenewable energy resources. Since Iran has a special geographic position, it has lot of solar and wind energy resources. Both solar and wind energy are free, renewable and adaptable with environment. The study of 10 year wind data in Iranian South coastal and Islands synoptic stations shows that the production of wind power electricity and water pumping is possible in this region. In this research, we studied the local and temporal distribution of wind using three – hour statistics of windspeed in Iranian South coastal and Islands synoptic stations. This research shows that the production of wind power electricity is possible in this region all the year.

Keywords: Wind energy, wind regime, wind electricity, synoptic station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
638 Optimization of a Hybrid Wind-Pv-Diesel Standalone System: Case Chlef, Algeria

Authors: T. Tahri, A. Bettahar, M. Douani

Abstract:

In this work, an attempt is made to design an optimal wind/pv/diesel hybrid power system for a village of Ain Merane, Chlef, Algeria, where the wind speed and solar radiation measurements were made. The aim of this paper is the optimization of a hybrid wind/solar/diesel system applied in term of technical and economic feasibility by simulation using HOMER. A comparison was made between the performance of wind/pv/diesel system and the classic connecting system.

Keywords: Chlef-Algeria, Homer, Renewable energy, Wind-pvdiesel hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008
637 Prediction of Basic Wind Speed for Ayeyarwady

Authors: Chaw Su Mon

Abstract:

Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).

Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
636 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters

Authors: Srinivasan Chandrasekaran, R. Nagavinothini

Abstract:

Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.

Keywords: Buoyant legs, dynamic analysis, offshore structures, preliminary design, random waves, triceratops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
635 An Experimental Helicopter Wind Envelope for Ship Operations

Authors: R. Bardera Mora

Abstract:

Launch and recovery helicopter wind envelope for a ship type was determined as the first step to the helicopter qualification program. Flight deck velocities data were obtained by means of a two components laser Doppler anemometer testing a 1/50th model in the wind tunnel stream. Full-scale flight deck measurements were obtained on board the ship using a sonic anemometer. Wind tunnel and full-scale measurements were compared, showing good agreement and finally, a preliminary launch and recovery helicopter wind envelope for this specific ship was built.

Keywords: Flight deck flow, relative wind, ship airwake, wind envelope

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197
634 Wind Load Characteristics in Libya

Authors: Mohammed B. Abohedma, Milad M. Alshebani

Abstract:

Recent trends in building constructions in Libya are more toward tall (high-rise) building projects. As a consequence, a better estimation of the lateral loading in the design process is becoming the focal of a safe and cost effective building industry. Byin- large, Libya is not considered a potential earthquake prone zone, making wind is the dominant design lateral loads. Current design practice in the country estimates wind speeds on a mere random bases by considering certain factor of safety to the chosen wind speed. Therefore, a need for a more accurate estimation of wind speeds in Libya was the motivation behind this study. Records of wind speed data were collected from 22 metrological stations in Libya, and were statistically analysed. The analysis of more than four decades of wind speed records suggests that the country can be divided into four zones of distinct wind speeds. A computer “survey" program was manipulated to draw design wind speeds contour map for the state of Libya. The paper presents the statistical analysis of Libya-s recorded wind speed data and proposes design wind speed values for a 50-year return period that covers the entire country.

Keywords: Ccontour map, return period, wind speed, and zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3615
633 The Behavior and Satisfaction of Tourists Affecting the Sustainable Tourism at the Amphawa Floating Market in Samut Songkhram Province

Authors: Chanpen Meenakorn

Abstract:

This research aims to study; (1) behavior of the tourists affecting the satisfaction level of tourism at the Amphawa floating market in Samut Songkhram province, (2) to study the satisfaction level of tourism at the Amphawa floating market. The research method will use quantitative research; data was collected by questionnaires distributed to the tourist who visits the Amphawa floating market for 480 samples. Data was analyzed by SPSS software to process descriptive statistic including frequency, percentage, mean, standard deviation and inferential statistic is t-test, F-test, and chi-square. The results showed that the behavior of tourists had known tourist attractions in the province comes from the mouth of relatives and friends suggested that he come here before and the reasons to visit is to want to pay homage to the various temples for the frequency to visit travel an average of 2-4 times and  the satisfaction of the tourists in the province found that the satisfaction level of tourists in the province at the significant level of the place, convenient  and services have a high level of satisfaction.

Keywords: Amphawa floating market behavior of the tourists, satisfaction level, sustainable tourism, Samut Songkhram province.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
632 The Effect of Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional Computational Fluid Dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: Savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112
631 Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT

Authors: Marco Raciti Castelli, Ernesto Benini

Abstract:

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.

Keywords: Wind turbine, NACA 0021, DU 06-W-200.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3789
630 Cyprus- Offshore Aquaculture Mooring Systems: Current Status and Future Development

Authors: V. Vassiliou, M. Menicou, M. Charalambides, J. DeCew, I. Tsukrov

Abstract:

Cyprus- offshore aquaculture industry has promising prospects taking into account that Cyprus is an island. Its production trend is increasing overtaking bigger countries such Greece and Italy. However, current mooring systems seem to be under-performing acting as obstacles for its future development. Furthermore, shallow coastal waters scarcity due to competing industries dictates future development to come by moving further from shore exposing fish farms and subsequently mooring systems to harsher environmental loadings. It is, therefore, of paramount importance to design mooring systems based on engineering and scientific principles and leave behind the present “trial and error" methods. This paper presents the current state of Cyprus- offshore aquaculture industry and focuses of its mooring designs by proposing a new methodology for designing more reliable systems, hence ensuring its future.

Keywords: Environmental loadings, mooring systems design, numerical modeling, offshore aquaculture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3515
629 CFD Simulation of Solid-Liquid Stirred Tank with Rushton Turbine and Propeller Impeller

Authors: M. H. Pour, V. M. Nansa, M. Saberi, A. M. Ghanadi, A. Aghayari, M. Mirzajanzadeh

Abstract:

Stirred tanks have applications in many chemical processes where mixing is important for the overall performance of the system. In present work 5%v of the tank is filled by solid particles with diameter of 700 m that Rushton Turbine and Propeller impeller is used for stirring. An Eulerian-Eulerian Multi Fluid Model coupled and for modeling rotating of impeller, moving reference frame (MRF) technique was used and standard-k- model was selected for turbulency. Flow field, radial velocity and axial distribution of solid for both of impellers was investigation and comparison. Comparisons of simulation results between Rushton Turbine and propeller impeller shows that final quality of solid-liquid slurry in different rotating speed for propeller impeller is better than the Rushton Turbine.

Keywords: CFD, Particle Velocity, Propeller Impeller, Rushton Turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
628 Wireless Communicated Smart Wind Sensor

Authors: Zdenek Bohuslavek

Abstract:

Development of microprocessor controlled sensor for measurement of wind speed and direction is the aim of this study. Electrical circuits and software were developed to the existing electromechanical part of the sensor TM-W2 becoming the properties of so-called smart sensor. The measured data about wind speed (sensitivity 0.01 m/s) and direction (0-360° by step 10°) are transmitted as 16-bit information. The connection between sensor and control unit is realized by radio communication (FM 433 MHz). Transition range is 220 m if used Quad type antenna. This concept provides substitution of actual cable systems by wireless ones.

Keywords: smart wind sensor, anemometer, wind speed, wireless communication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
627 Study on Connecting Method of Box Pontoons

Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee

Abstract:

Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.

Keywords: Connection, floating container terminal, pontoon, pre-stressing, shear key.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
626 Numerical Simulation of the Aerodynamic Loads acting on top of the SMART Centre for PV Applications

Authors: M. Raciti Castelli, S. Toniato, E. Benini

Abstract:

The flow filed around a flatted-roof compound has been investigated by means of 2D and 3D numerical simulations. A constant wind velocity profile, based both on the maximum reference wind speed in the building site (peak gust speed worked out for a 50- year return period) and on the local roughness coefficient, has been simulated in order to determine the wind-induced loads on top of the roof. After determining the influence of the incoming wind directions on the induced roof loads, a 2D analysis of the most severe load condition has been performed, achieving a numerical quantification of the expected wind-induced forces on the PV panels on top of the roof.

Keywords: CFD, wind-induced loads, flow around buildings, photovoltaic system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
625 Thermal Analysis of Open-Cycle Regenerator Gas-Turbine Power-Plant

Authors: M. M. Rahman, Thamir K. Ibrahim, M. Y. Taib, M. M. Noor, Rosli A. Bakar

Abstract:

Regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than simple cycle operating under the same conditions. The power output, efficiency and specific fuel consumption are simulated with respect to operating conditions. The analytical formulae about the relation to determine the thermal efficiency are derived taking into account the effected operation conditions (ambient temperature, compression ratio, regenerator effectiveness, compressor efficiency, turbine efficiency and turbine inlet temperature). Model calculations for a wide range of parameters are presented, as are comparisons with simple gas turbine cycle. The power output and thermal efficiency are found to be increasing with the regenerative effectiveness, and the compressor and turbine efficiencies. The efficiency increased with increase the compression ratio to 5, then efficiency decreased with increased compression ratio, but in simple cycle the thermal efficiency always increase with increased in compression ratio. The increased in ambient temperature caused decreased thermal efficiency, but the increased in turbine inlet temperature increase thermal efficiency.

Keywords: Gas turbine, power plant, thermal analysis, regeneration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7207
624 Effects of Sea Water Level Fluctuations on Seismic Response of Jacket Type Offshore Platforms

Authors: M. Rad, M. Dolatshahi Pirooz, M. Esmayili

Abstract:

To understand the seismic behavior of the offshore structures, the dynamic interaction of the water-structure-soil should be assessed. In this regard the role of the water dynamic properties in magnifying or reducing of the effects of earthquake induced motions on offshore structures haven't been investigated in precise manner in available literature. In this paper the sea water level fluctuations effects on the seismic behavior of a sample of offshore structures has been investigated by emphasizing on the water-structure interaction phenomenon. For this purpose a two dimensional finite element model of offshore structures as well as surrounded water has been developed using ANSYS software. The effect of soil interaction with embedded pile foundation has been imposed by using a series of nonlinear springs in horizontal and vertical directions in soil-piles contact points. In the model, the earthquake induced motions have been applied on springs and consequently the motions propagated upward to the structure and surrounded water. As a result of numerical study, the horizontal deformations of the offshore deck as well as internal force and buckling coefficient in structural elements have been recorded and controlled with and without water presence. In part of study a parametric study has been accomplished on sea water level fluctuations and effect of this parameter has been studied on the aforementioned numerical results.

Keywords: Fluid-Structure Interaction, Jacket, Sea Water Level, Seismic Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
623 Numerical Evaluation of the Contribution of Inertial and Aerodynamic Forces on VAWT Blade Loading

Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini

Abstract:

A two-dimensional numerical simulation of the contribution of both inertial and aerodynamic forces on the blade loads of a Vertical-Axis Wind Turbine (VAWT) is presented. After describing the computational model and the relative validation procedure, a complete campaign of simulations - based on full RANS unsteady calculations - is proposed for a three-bladed rotor architecture characterized by a NACA 0021 airfoil. For each analyzed angular velocity, the combined effect of pressure and viscous forces acting on every rotor blade are compared to the corresponding centrifugal forces, due to the revolution of the turbine, thus achieving a preliminary estimation of the correlation between overall rotor efficiency and structural blade loads.

Keywords: CFD, VAWT, NACA 0021, aerodynamic forces, inertial loadings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
622 Analysis on Iranian Wind Catcher and Its Effect on Natural Ventilation as a Solution towards Sustainable Architecture(Case Study: Yazd)

Authors: Mahnaz Mahmoudi Zarandi (Qazvin Islamic Azad University)

Abstract:

wind catchers have been served as a cooling system, used to provide acceptable ventilation by means of renewable energy of wind. In the present study, the city of Yazd in arid climate is selected as case study. From the architecture point of view, learning about wind catchers in this study is done by means of field surveys. Research method for selection of the case is based on random form, and analytical method. Wind catcher typology and knowledge of relationship governing the wind catcher's architecture were those measures that are taken for the first time. 53 wind catchers were analyzed. The typology of the wind-catchers is done by the physical analyzing, patterns and common concepts as incorporated in them. How the architecture of wind catcher can influence their operations by analyzing thermal behavior are the archetypes of selected wind catchers. Calculating fluids dynamics science, fluent software and numerical analysis are used in this study as the most accurate analytical approach. The results obtained from these analyses show the formal specifications of wind catchers with optimum operation in Yazd. The knowledge obtained from the optimum model could be used for design and construction of wind catchers with more improved operation

Keywords: Fluent Software, Iranian architecture, wind catcher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4446
621 Numerical Analysis of Wind Loads on a Hemicylindrical Roof Building

Authors: Marco Raciti Castelli, Sergio Toniato, Ernesto Benini

Abstract:

The flow field over a three dimensional pole barn characterized by a cylindrical roof has been numerically investigated. Wind pressure and viscous loads acting on the agricultural building have been analyzed for several incoming wind directions, so as to evaluate the most critical load condition on the structure. A constant wind velocity profile, based on the maximum reference wind speed in the building site (peak gust speed worked out for 50 years return period) and on the local roughness coefficient, has been simulated. In order to contemplate also the hazard due to potential air wedging between the stored hay and the lower part of the ceiling, the effect of a partial filling of the barn has been investigated. The distribution of wind-induced loads on the structure have been determined, allowing a numerical quantification of the effect of wind direction on the induced stresses acting on a hemicylindrical roof.

Keywords: CFD, wind, building, hemicylindrical roof.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
620 Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall

Authors: Susanta Banerjee, Sanjaya Kumar Patro

Abstract:

Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.

Keywords: Floating column, Infill Wall, Park-Ang Damage Index, Damage State.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066
619 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: Renault number, porous media, wind damping, wind tunnel test, building ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
618 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame

Authors: Seong Do Kim, Woo Young Jung

Abstract:

Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.

Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
617 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant

Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi

Abstract:

A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.

Keywords: Energy saving, Gas turbine, Methanol, Power generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
616 The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow

Authors: J. Tonkonogij, A. Pedišius, A. Stankevičius

Abstract:

The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.

Keywords: Dynamic error, pulsing flow, numerical simulation, response, turbine gas meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153