Search results for: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5632

Search results for: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection

4012 String Searching in Dispersed Files using MDS Convolutional Codes

Authors: A. S. Poornima, R. Aparna, B. B. Amberker, Prashant Koulgi

Abstract:

In this paper, we propose use of convolutional codes for file dispersal. The proposed method is comparable in complexity to the information Dispersal Algorithm proposed by M.Rabin and for particular choices of (non-binary) convolutional codes, is almost as efficient as that algorithm in terms of controlling expansion in the total storage. Further, our proposed dispersal method allows string search.

Keywords: Convolutional codes, File dispersal, Filereconstruction, Information Dispersal Algorithm, String search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
4011 Improved Lung Nodule Visualization on Chest Radiographs using Digital Filtering and Contrast Enhancement

Authors: Benjamin Y. M. Kwan, Hon Keung Kwan

Abstract:

Early detection of lung cancer through chest radiography is a widely used method due to its relatively affordable cost. In this paper, an approach to improve lung nodule visualization on chest radiographs is presented. The approach makes use of linear phase high-frequency emphasis filter for digital filtering and histogram equalization for contrast enhancement to achieve improvements. Results obtained indicate that a filtered image can reveal sharper edges and provide more details. Also, contrast enhancement offers a way to further enhance the global (or local) visualization by equalizing the histogram of the pixel values within the whole image (or a region of interest). The work aims to improve lung nodule visualization of chest radiographs to aid detection of lung cancer which is currently the leading cause of cancer deaths worldwide.

Keywords: Chest radiographs, Contrast enhancement, Digital filtering, Lung nodule detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
4010 Combining ILP with Semi-supervised Learning for Web Page Categorization

Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul

Abstract:

This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.

Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
4009 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies

Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan

Abstract:

The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.

Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
4008 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences

Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso

Abstract:

Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.

Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
4007 An Effective Algorithm for Minimum Weighted Vertex Cover Problem

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.

Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3881
4006 Sound Exposure Effects towards Ross Broilers Growth Rate

Authors: Rashidah Ghazali, Herlina Abdul Rahim, Mashitah Shikh Maidin, Shafishuhaza Sahlan, Noramli Abdul Razak

Abstract:

Sound exposure effects have been investigated by broadcasting a group of broilers with sound of Quran verses (Group B) whereas the other group is the control broilers (Group C). The growth rate comparisons in terms of weight and raw meat texture measured by shear force have been investigated. Twenty-seven broilers were randomly selected from each group on Day 24 and weight measurement was carried out every week till the harvest day (Day 39).Group B showed a higher mean weight on Day 24 (1.441 ± 0.013 kg) than Group C. Significant difference in the weight on Day 39 existed for Group B compared to Group C (p < 0.05). However, there was no significant (p >0.05) difference of shear force in the same muscles (breast and drumstick raw meat) of both groups but the shear force of the breast meat for Group B and C broilers was lower (p < 0.05) than that of their drumstick meat. Thus, broadcasting the sound of Quran verses in the coop can be applied to improve the growth rate of broilers for producing better quality poultry.

Keywords: Broilers, sound, shear force, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3133
4005 An Exact Algorithm for Location–Transportation Problems in Humanitarian Relief

Authors: Chansiri Singhtaun

Abstract:

This paper proposes a mathematical model and examines the performance of an exact algorithm for a location– transportation problems in humanitarian relief. The model determines the number and location of distribution centers in a relief network, the amount of relief supplies to be stocked at each distribution center and the vehicles to take the supplies to meet the needs of disaster victims under capacity restriction, transportation and budgetary constraints. The computational experiments are conducted on the various sizes of problems that are generated. Branch and bound algorithm is applied for these problems. The results show that this algorithm can solve problem sizes of up to three candidate locations with five demand points and one candidate location with up to twenty demand points without premature termination.

Keywords: Disaster response, facility location, humanitarian relief, transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
4004 A Finite-Time Consensus Protocol of the Multi-Agent Systems

Authors: Xin-Lei Feng, Ting-Zhu Huang

Abstract:

According to conjugate gradient algorithm, a new consensus protocol algorithm of discrete-time multi-agent systems is presented, which can achieve finite-time consensus. Finally, a numerical example is given to illustrate our theoretical result.

Keywords: Consensus protocols; Graph theory; Multi-agent systems;Conjugate gradient algorithm; Finite-time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
4003 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.

Keywords: Pattern recognition, partitional clustering, K-means clustering, Manhattan distance, terrorism data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
4002 Enhancing Performance of Bluetooth Piconets Using Priority Scheduling and Exponential Back-Off Mechanism

Authors: Dharmendra Chourishi “Maitraya”, Sridevi Seshadri

Abstract:

Bluetooth is a personal wireless communication technology and is being applied in many scenarios. It is an emerging standard for short range, low cost, low power wireless access technology. Current existing MAC (Medium Access Control) scheduling schemes only provide best-effort service for all masterslave connections. It is very challenging to provide QoS (Quality of Service) support for different connections due to the feature of Master Driven TDD (Time Division Duplex). However, there is no solution available to support both delay and bandwidth guarantees required by real time applications. This paper addresses the issue of how to enhance QoS support in a Bluetooth piconet. The Bluetooth specification proposes a Round Robin scheduler as possible solution for scheduling the transmissions in a Bluetooth Piconet. We propose an algorithm which will reduce the bandwidth waste and enhance the efficiency of network. We define token counters to estimate traffic of real-time slaves. To increase bandwidth utilization, a back-off mechanism is then presented for best-effort slaves to decrease the frequency of polling idle slaves. Simulation results demonstrate that our scheme achieves better performance over the Round Robin scheduling.

Keywords: Piconet, Medium Access Control, Polling algorithm, Scheduling, QoS, Time Division Duplex (TDD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
4001 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
4000 Possible Role of Polyamine on Tumor Spread after Surgical Trauma

Authors: Kuniyasu Soda

Abstract:

Surgical trauma seems to facilitate metastatic spread, although the underlying mechanisms are not known. Increased concentrations of polyamines (spermine and spermidine) in the blood seem to have associated with the enhanced malignant potential of cancer cells and decrease in anti-tumor immunity of cancer patients. In addition to de novo synthesis in rapidly growing cells such as normal regenerating cells and cancer cells, cells can take up polyamines from extra-cellular sources. We have shown that increased polyamine concentration results in decreases in cytokine production and expression of adhesion molecules involved in anti-tumor immunity, such as CD11a. And, immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer cell (LAK) activities. Because blood polyamine levels are increased in post-surgical patients, polyamine seems to have roles on post-traumatic tumor spread.

Keywords: Immune function, LAK, Polyamine, Surgical trauma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
3999 Auto Classification for Search Intelligence

Authors: Lilac A. E. Al-Safadi

Abstract:

This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.

Keywords: Information Processing on the Web, Data Mining, Document Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
3998 Improved Zero Text Watermarking Algorithm against Meaning Preserving Attacks

Authors: Jalil Z., Farooq M., Zafar H., Sabir M., Ashraf E.

Abstract:

Internet is largely composed of textual contents and a huge volume of digital contents gets floated over the Internet daily. The ease of information sharing and re-production has made it difficult to preserve author-s copyright. Digital watermarking came up as a solution for copyright protection of plain text problem after 1993. In this paper, we propose a zero text watermarking algorithm based on occurrence frequency of non-vowel ASCII characters and words for copyright protection of plain text. The embedding algorithm makes use of frequency non-vowel ASCII characters and words to generate a specialized author key. The extraction algorithm uses this key to extract watermark, hence identify the original copyright owner. Experimental results illustrate the effectiveness of the proposed algorithm on text encountering meaning preserving attacks performed by five independent attackers.

Keywords: Copyright protection, Digital watermarking, Document authentication, Information security, Watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
3997 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
3996 Enhanced Character Based Algorithm for Small Parsimony

Authors: Parvinder Singh Sandhu, Sumeet Kaur Sehra, Karmjit Kaur

Abstract:

Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.

Keywords: Phylogenetic Analysis, Small Parsimony, EnhancedFitch Algorithm, Enhanced Sakoff Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
3995 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172
3994 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
3993 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, Gazebo, Rviz, Turtlebot2, SLAM algorithms, 2d Indoor environment, Cartographer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
3992 Singularity Loci of Actuation Schemes for 3RRR Planar Parallel Manipulator

Authors: S. Ramana Babu, V. Ramachandra Raju, K. Ramji

Abstract:

This paper presents the effect of actuation schemes on the performance of parallel manipulators and also how the singularity loci have been changed in the reachable workspace of the manipulator with the choice of actuation scheme to drive the manipulator. The performance of the eight possible actuation schemes of 3RRR planar parallel manipulator is compared with each other. The optimal design problem is formulated to find the manipulator geometry that maximizes the singularity free conditioned workspace for all the eight actuation cases, the optimization problem is solved by using genetic algorithms.

Keywords: Actuation schemes, GCI, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
3991 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm

Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.

Keywords: OFDM, Impulsive Noise, SSRLS, BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
3990 Human Verification in a Video Surveillance System Using Statistical Features

Authors: Sanpachai Huvanandana

Abstract:

A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.

Keywords: Human verification, object recognition, videounderstanding, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
3989 Relative Mapping Errors of Linear Time Invariant Systems Caused By Particle Swarm Optimized Reduced Order Model

Authors: G. Parmar, S. Mukherjee, R. Prasad

Abstract:

The authors present an optimization algorithm for order reduction and its application for the determination of the relative mapping errors of linear time invariant dynamic systems by the simplified models. These relative mapping errors are expressed by means of the relative integral square error criterion, which are determined for both unit step and impulse inputs. The reduction algorithm is based on minimization of the integral square error by particle swarm optimization technique pertaining to a unit step input. The algorithm is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing methods.

Keywords: Order reduction, Particle swarm optimization, Relative mapping error, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
3988 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi

Abstract:

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Keywords: Signature Recognition, Artificial Neural Network, Angle Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
3987 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan

Abstract:

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
3986 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks

Authors: S. Padmapriya, M. Tamilarasi

Abstract:

Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.

Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
3985 Probability and Instruction Effects in Syllogistic Conditional Reasoning

Authors: Olimpia Matarazzo, Ivana Baldassarre

Abstract:

The main aim of this study was to examine whether people understand indicative conditionals on the basis of syntactic factors or on the basis of subjective conditional probability. The second aim was to investigate whether the conditional probability of q given p depends on the antecedent and consequent sizes or derives from inductive processes leading to establish a link of plausible cooccurrence between events semantically or experientially associated. These competing hypotheses have been tested through a 3 x 2 x 2 x 2 mixed design involving the manipulation of four variables: type of instructions (“Consider the following statement to be true", “Read the following statement" and condition with no conditional statement); antecedent size (high/low); consequent size (high/low); statement probability (high/low). The first variable was between-subjects, the others were within-subjects. The inferences investigated were Modus Ponens and Modus Tollens. Ninety undergraduates of the Second University of Naples, without any prior knowledge of logic or conditional reasoning, participated in this study. Results suggest that people understand conditionals in a syntactic way rather than in a probabilistic way, even though the perception of the conditional probability of q given p is at least partially involved in the conditionals- comprehension. They also showed that, in presence of a conditional syllogism, inferences are not affected by the antecedent or consequent sizes. From a theoretical point of view these findings suggest that it would be inappropriate to abandon the idea that conditionals are naturally understood in a syntactic way for the idea that they are understood in a probabilistic way.

Keywords: Conditionals, conditional probability, conditional syllogism, inferential task.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
3984 Geographic Profiling Based on Multi-point Centrography with K-means Clustering

Authors: Jiaji Zhou, Le Liang, Long Chen

Abstract:

Geographic Profiling has successfully assisted investigations for serial crimes. Considering the multi-cluster feature of serial criminal spots, we propose a Multi-point Centrography model as a natural extension of Single-point Centrography for geographic profiling. K-means clustering is first performed on the data samples and then Single-point Centrography is adopted to derive a probability distribution on each cluster. Finally, a weighted combinations of each distribution is formed to make next-crime spot prediction. Experimental study on real cases demonstrates the effectiveness of our proposed model.

Keywords: Geographic profiling, Centrography model, K-means algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
3983 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: LiDAR, real-time system, clustering, tracking, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4669