Possible Role of Polyamine on Tumor Spread after Surgical Trauma
Authors: Kuniyasu Soda
Abstract:
Surgical trauma seems to facilitate metastatic spread, although the underlying mechanisms are not known. Increased concentrations of polyamines (spermine and spermidine) in the blood seem to have associated with the enhanced malignant potential of cancer cells and decrease in anti-tumor immunity of cancer patients. In addition to de novo synthesis in rapidly growing cells such as normal regenerating cells and cancer cells, cells can take up polyamines from extra-cellular sources. We have shown that increased polyamine concentration results in decreases in cytokine production and expression of adhesion molecules involved in anti-tumor immunity, such as CD11a. And, immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer cell (LAK) activities. Because blood polyamine levels are increased in post-surgical patients, polyamine seems to have roles on post-traumatic tumor spread.
Keywords: Immune function, LAK, Polyamine, Surgical trauma.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089473
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774References:
[1] C. Loser, U. R. Folsch, C. Paprotny, and W. Creutzfeldt, "Polyamines in colorectal cancer. Evaluation of polyamine concentrations in the colon tissue, serum, and urine of 50 patients with colorectal cancer,” Cancer, vol. 65, no. 4, pp. 958-966, 1990.
[2] M. Chatel, F. Darcel, V. Quemener, H. Hercouet, and J. P. Moulinoux, "Red blood cell polyamines as biochemical markers of supratentorial malignant gliomas,” Anticancer Res,vol. 7, no. 1, pp. 33-38, 1987.
[3] S. Kubota, Z. Yamasaki, M. Yoshimoto, N. Murata, T. Wada, N. Ohsawa, and F. Takaku, "The value of urinary polyamine assay in stomach cancer. Comparison with serum carcinoembryonic antigen,” Cancer,vol. 56, no. 7, pp 1630-1635, 1985.
[4] N. Uehara, S. Shirakawa, H. Uchino, and Y. Saeki, "Elevated contents of spermidine and spermine in the erythrocytes of cancer patients,” Cancer,vol. 45, no. 1, pp 108-111, 1980.
[5] B. G. Durie, S. E. Salmon, and D. H. Russell, "Polyamines as markers of response and disease activity in cancer chemotherapy,” Cancer Res,vol. 37, no. 1, pp 214-221, 1977.
[6] K. Soda, Y. Kano, T. Nakamura, K. Kasono, M. Kawakami, and F. Konishi, "Spermine, a natural polyamine, suppresses LFA-1 expression on human lymphocyte,” J Immunol,vol. 175, no. 1, pp 237-245, 2005.
[7] K. Soda, Y. Kano, T. Nakamura, Kawakami, and F. Konishi, "Spermine and spermidine induce some of the immune suppression observed in cancer patients,” Annals of Cancer Research and Therapy,vol. 11, no. 1&2, pp 243-253, 2003.
[8] Y. Kano, K. Soda, T. Nakamura, M. Saitoh, M. Kawakami, and F. Konishi, "Increased blood spermine levels decrease the cytotoxic activity of lymphokine-activated killer cells: a novel mechanism of cancer evasion,” Cancer Immunol Immunother, vol.56, no. 6, pp 771-781, 2007.
[9] K. Nishioka, M. M. Romsdahl, and M. J. McMurtrey, "Serum polyamine alterations in surgical patients with colorectal carcinoma,” J Surg Oncol, vol.9, no. 6, pp 555-562, 1977.
[10] T. Tsukamoto, H. Kinoshita, K. Hirohashi, S. Kubo, and S. Otani, "Human erythrocyte polyamine levels after partial hepatectomy,” Hepatogastroenterology, vol. 44, no. 15, pp 744-750, 1997.
[11] D. H. Russell, "Clinical relevance of polyamines,” Crit Rev Clin Lab Sci, vol. 18, no. 3, pp. 261-311, 1983.
[12] J. Hochman, A. Katz, and U. Bachrach, "Polyamines and protein kinase II. Effect of polyamines on cyclic AMP--dependent protein kinase from rat liver,” Life Sci, vol. 22, no. 17, pp. 1481-1484, 1978.
[13] A. Tabib, and U. Bachrach, "Activation of the proto-oncogene c-myc and c-fos by c-ras: involvement of polyamines,” Biochem Biophys Res Commun, vol. 202, no. 2, pp 720-727, 1994.
[14] C. A. Panagiotidis, S. Artandi, K. Calame, and S. J. Silverstein, "Polyamines alter sequence-specific DNA-protein interactions,” Nucleic Acids Res, vol. 23, no. 10, pp. 1800-1809, 1995.
[15] A. C. Childs, D. J. Mehta, and E. W. Gerner, "Polyamine-dependent gene expression,” Cell Mol Life Sci, vol. 60, no. 7, pp. 1394-1406, 2003.
[16] L. D'Agostino, S. Pignata, B. Daniele, G. D'Adamo, C. Ferraro, G, Silvestro, P. Tagliaferri, A. Contegiacomo, R. Gentile, G. Tritto, A. R. Bianco, and G. Mazzacca, "Polyamine uptake by human colon carcinoma cell line CaCo-2,” Digestion, vol. 46, Suppl 2, pp. 352-359, 1990.
[17] J. J. Feige, and E. M. Chambaz, "Polyamine uptake by bovine adrenocortical cells,” Biochim Biophys Acta, vol. 846, no. 1, pp. 93-100, 1985.
[18] S. Bardocz, D. S. Brown, G. Grant, and A. Pusztai, "Luminal and basolateral polyamine uptake by rat small intestine stimulated to grow by Phaseolus vulgaris lectin phytohaemagglutinin in vivo,” Biochim Biophys Acta, vol. 1034, no. 1, pp. 46-52, 1990.
[19] D. L. Osborne, and E. R. Seidel, "Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation,” Am J Physiol, vol. 258, no. 4 Pt 1, pp. G576-G584, 1990.
[20] M. Kobayashi, Y. J. Xu, K. Samejima, H. Goda, M. Niitsu, M. Takahashi, Y. and Hashimoto, "Fate of orally administered 15N-labeled polyamines in rats bearing solid tumors,” Biol Pharm Bull, vol. 26, no. 3, pp. 285-288, 2003.
[21] K. Soda, Y. Kano, M. Sakuragi, K. Takao, A. Lefor, and F. Konishi, "Long-term oral polyamine intake increases blood polyamine concentrations,” J Nutr Sci Vitaminol (Tokyo), vol. 55, no. 4, pp. 361-366, 2009.
[22] K. Soda, Y. Dobashi, Y. Kano, S. Tsujinaka, and F. Konishi, "Polyamine-rich food decreases age-associated pathology and mortality in aged mice,” Exp Gerontol, vol. 44, no. 11, pp. 727-732, 2009.
[23] B. P. Brodal, K. A. Eliassen, H. Ronning, and H. Osmundsen, "Effects of dietary polyamines and clofibrate on metabolism of polyamines in the rat,” J Nutr Biochem, vol. 10, no. 12, pp. 700-708, 1999.
[24] S. Sarhan, M. Weibel, and N. Seiler, "Effect of polyamine deprivation on the survival of intracranial glioblastoma bearing rats,” Anticancer Res, vol. 11, no. 2, pp. 987-992, 1991.
[25] N. Seiler, S. Sarhan, C. Grauffel, R. Jones, B. Knodgen, and J. P. Moulinoux, "Endogenous and exogenous polyamines in support of tumor growth,” Cancer Res, vol. 50, no. 16, pp. 5077-5083, 1990.
[26] B. G. Cipolla, R. Havouis, and J. P. Moulinoux, "Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients,” Biomed Pharmacother, vol. 64, no. 5, pp. 363-368, 2010.
[27] S. Kubota, M. Okada, M. Yoshimoto, N. Murata, Z. Yamasaki, T. Wada, K. Imahori, N. Ohsawa, F. Takaku, "Urinary polyamines as a tumor marker,” Cancer Detect Prev, vo. 8, no. 1-2, pp. 189-192, 1985.
[28] T. S. Weiss, G. Bernhardt, A. Buschauer, W. E. Thasler, D. Dolgner, H. Zirngibl, and K. W. Jauch, "Polyamine levels of human colorectal adenocarcinomas are correlated with tumor stage and grade,” Int J Colorectal Dis, vol. 17, no. 6, pp. 381-387, 2002.
[29] M. Linsalata, M. G. Caruso, S. Leo, V. Guerra, B. D'Attoma, and A. Di Leo, "Prognostic value of tissue polyamine levels in human colorectal carcinoma,” Anticancer Res, vol. 22, no. 4, pp. 2465-2469, 2002.
[30] A. N. Kingsnorth, A. B. Lumsden, and H. M. Wallace, "Polyamines in colorectal cancer,” Br J Surg, vol. 71, no. 10, pp. 791-794, 1984.
[31] J. P. Moulinoux, V. Quemener, N. A. Khan, J. G. Delcros, and R. Havouis, "Spermidine uptake by erythrocytes from normal and Lewis lung carcinoma (3LL) grafted mice: I. In vitro study,” Anticancer Res, vol. 9, no. 4, pp. 1057-1062, 1989.
[32] K. D. Cooper, J. B. Shukla, and O. M. Rennert, "Polyamine compartmentalization in various human disease states,” Clin Chim Acta, vol. 82, no. 1-2, pp. 1-7, 1978.
[33] G. G. Page, S. Ben-Eliyahu, and J. C. Liebeskind, "The role of LGL/NK cells in surgery-induced promotion of metastasis and its attenuation by morphine,” Brain Behav Immun, vol. 8, no. 3, pp. 241-250, 1994.
[34] R. E. Pollock, G. F. Babcock, M. M. Romsdahl, and K. Nishioka, "Surgical stress-mediated suppression of murine natural killer cell cytotoxicity,” Cancer Res, vol. 44, no. 9, pp. 3888-3891, 1984.
[35] T. Hattori, Y. Hamai, T. Harada, H. Ikeda, and T. Ikeda, "Enhancing effect of thoracotomy and/or laparotomy on the development of the lung metastases in rats after intravenous inoculation of tumor cells,” Jpn J Surg, vol. 7, no. 4, pp. 263-268, 1977.
[36] S. Kubo, I. Matsui-Yuasa, S. Otani, S. Morisawa, H. Kinoshita, and K. Sakai, "Effect of splenectomy on liver regeneration and polyamine metabolism after partial hepatectomy,” J Surg Res, vol. 41, no. 4, pp. 401-409, 1986.
[37] G. D. Luk, "Essential role of polyamine metabolism in hepatic regeneration. Inhibition of deoxyribonucleic acid and protein synthesis and tissue regeneration by difluoromethylornithine in the rat,” Gastroenterology, vol. 90, no. 5 Pt 1, pp. 1261-1267, 1986.
[38] H. S. Beyer, M. Ellefson, R. Sherman, and L. Zieve, "Aging alters ornithine decarboxylase and decreases polyamines in regenerating rat liver but putrescine replacement has no effect,” J Lab Clin Med, vol. 119, no. 1, pp. 38-47, 1992.
[39] A. E. Mautes, W. Paschen, G. Rohn, and A. C. Nacimiento, "Changes in ornithine decarboxylase activity and putrescine concentrations after spinal cord compression injury in the rat,” Neurosci Lett, vol. 264, no. 1-3, pp. 153-156, 1999.
[40] C. M. Balch, K. Itoh, and A. B. Tilden, "Cellular immune defects in patients with melanoma involving interleukin-2-activated lymphocyte cytotoxicity and a serum suppressor factor,” Surgery, vol. 98, no. 2, pp. 151-157, 1985.
[41] G. G. Hermann, K. R. Petersen, K. Steven, and J. Zeuthen, "Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer: decreased LAK cytotoxicity caused by a low incidence of CD56+ and CD57+ mononuclear blood cells,” J Clin Immunol, vol. 10, no. 6, pp. 311-320, 1990.
[42] N.L. Wood, E. N. Kitces, and W. K. Blaylock, "Depressed lymphokine activated killer cell activity in mycosis fungoides. A possible marker for aggressive disease,” Arch Dermatol, vol. 126, no. 7, pp. 907-913, 1990.
[43] J. Funk, G. Schmitz, K. Failing, and E. Burkhardt, "Natural killer (NK) and lymphokine-activated killer (LAK) cell functions from healthy dogs and 29 dogs with a variety of spontaneous neoplasms,” Cancer Immunol Immunother, vol. 54, no. 1, pp. 87-92, 2005.