
 

 

  
Abstract—The dynamic or complex modulus test is considered 

to be a mechanistically based laboratory test to reliably characterize 
the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes 
used in the construction of roads. The most common observation is 
that the data collected from these tests are often noisy and somewhat 
non-sinusoidal. This hampers accurate analysis of the data to obtain 
engineering insight. The goal of the work presented in this paper is to 
develop and compare automated evolutionary computational 
techniques to filter test noise in the collection of data for the HMA 
complex modulus test. The results showed that the Covariance 
Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is 
computationally efficient for filtering data obtained from the HMA 
complex modulus test. 
 

Keywords—HMA, dynamic modulus, GA, evolutionary 
computation.  

I. INTRODUCTION 
HE goal of the work presented in this paper is to develop 
and compare automated evolutionary computational 

techniques to filter test noise in the collection of data for the 
Hot-Mix Asphalt (HMA) complex modulus test. The dynamic 
or complex modulus (E*) test is considered to be a 
mechanistically based laboratory test to reliably characterize 
the strength and load-resistance of HMA mixes [1]. A typical 
dense-graded HMA mixture is made of 86 percent by volume 
of aggregates bound with about 10 percent by volume of 
asphalt and incorporates about 4 percent of air-voids. The 
newly released Mechanistic-Empirical Pavement Design 
Guide (MEPDG) uses the dynamic modulus test to 
characterize HMA mixes used on interstate highways and 
most other high-volume highways that require superior load 
resistance [2]. 
For linear visco-elastic materials such as HMA mixtures, the 
stress-strain relationship under a continuous sinusoidal 

 
Manuscript received November 7, 2006.  
Mr. Madhav V. Chitturi is with University of Illinois at Urbana-

Champaign, Urbana, IL 61801 USA (phone: 217-333-8988; fax: 217-333-
1924; e-mail: chitturi@uiuc.edu).  

Dr. Anshu Manik is with the Department of Civil Engineering, University 
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail: 
manik@uiuc.edu). 

Dr. Kasthurirangan Gopalakrishnan is with the Department of Civil 
Engineering, Iowa State University, Ames, IA 50011 UAA (e-mail: 
rangan@iastate.edu). 

loading is defined by its complex dynamic modulus (E*) [3]. 
This is a complex number that relates stress to strain for linear 
visco-elastic materials subjected to continuously applied 
sinusoidal loading in the frequency domain.  
 The HMA complex modulus is defined as the ratio of the 
amplitude of the sinusoidal stress at any given time, t, and the 
angular load frequency, ω, δ = δ0sin(ωt) and the amplitude of 
the sinusoidal strain ε = ε0sin(ωt-ø), at the same time and 
frequency, that results in a steady state response (Fig. 1 [4]): 
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where, δ0 = peak (maximum) stress; ε0 = peak (maximum) 
strain; ø = phase angle, degrees; ω = angular velocity; t = 
time, seconds; i = imaginary component of the complex 
modulus 
 Mathematically, the dynamic modulus is defined as the 
absolute value of the complex modulus: 
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Fig. 1 HMA dynamic (complex) modulus test [4] 

 
 Complex modulus laboratory testing of asphalt concrete 
mixtures typically involves the use of cylindrical specimens of 
150 mm height and 100 mm diameter subjected to simulated 
sinusoidal loading at strain levels targeted to be in the linear 
visco-elastic range [5]. In the laboratory, a sinusoidal 
(haversine) axial compressive stress is applied to a cylindrical 
asphalt concrete specimen at a given temperature and loading 
frequency. The applied stress and the resulting recoverable 
axial strain response of the specimen is measured and used to 
calculate the complex modulus (E*) and phase angle (ø). 
 Given the complex visco-elastic nature of the asphalt 
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mixture, the temperatures and frequencies for the test methods 
pose an appreciable challenge for test equipment and 
measurement transducers. Test machine instrumentation issues 
can result in errors greater than 10% in the measurement of 
dynamic modulus for the HMA mixtures [6]. The most 
common observation is that the data collected from these tests 
are often noisy and somewhat non-sinusoidal (see Fig. 2) [7]. 
This hampers accurate analysis of the data to obtain 
engineering insight. 
 The solution to the presence of noise in the data calls for an 
appropriately designed filter that would eliminate the 
frequency components corresponding to the noise from the 
signal. There exist several standard ways to do this, but each 
suffer from certain limitations. 
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Fig. 2 Typical strain response from (HMA dynamic (complex) 

modulus test  

II. MOTIVATION 
During the HMA complex modulus laboratory testing, a 

fully computer-controlled digital data acquisition system 
records the time history of the applied load and the axial 
deformations. The load is measured with an electronic load 
cell in contact with one of the specimen caps. Axial 
deformations are measured with linear variable differential 
transformers. Strain gauges, or more often extensometers, 
affixed at various positions on the test specimens measure 
strain, and the data are automatically fed into a computer to 
calculate test results. The non-homogenous nature of HMA 
mix contributes to noise in the test data. Further, the data 
acquisition devices have limitations on their accuracy and 
resolution. As the strain response data has components of 
electronic noise, it is often required to filter the data before 
using it for analysis.   
 Hardware-level filters might have been a possible solution 
to this problem. However, hardware-level filters, especially at 
higher test frequencies, could easily cause attenuation of 
desired frequency responses. There are also standard digital 
filters available for this purpose. For instance, the Chebyshev 
Type II filter and the Butterworth filter [8] are frequently used 
in this context. But all these filters need to be designed 
specifically for each data set to extract optimal performance. 
Commercial tools like the signal processing toolbox provided 
with MATLAB® enable optimal filter design for specific sets 
of data. However, to automate this process the use of Genetic 
Algorithms (GAs) could be very helpful. 
 Calculation of HMA dynamic modulus involves the use of 

peak-to-peak amplitude of the stress (loading) and strain 
(response) [5]. To automate the analysis of data obtained from 
these tests, a peak search algorithm is generally required to 
determine the magnitudes of peaks and troughs and hence 
amplitude in the stress and strain records. 

III. BACKGROUND 
Genetic Algorithms (GAs) have been used in a large 

number of applications in the field of signal processing [9]. 
Tang et al. [10] describe some of the most successful 
applications of GAs in the signal processing area. These 
include IIR Adaptive Filtering, Nonlinear Model Selection, 
Active Noise Control and Speech Processing applications. 
Standard procedures are available to design Finite Impulse 
Response (FIR) filters automatically without using genetic 
algorithms [11-15]. However, such traditional optimizing 
filter design techniques suffer from various problems as 
pointed out by Suckley [16] who first applied GAs to digital 
filter design specifically to the design of low-pass FIR filters.  

GAs provide methodologies that is automated, rapid, and 
gives filter realizations near minimal computational 
complexity. Roberts and Wade [17] extended Suckley’s [16] 
work to design medium-order multiplier-less FIR filters. 
Dexiang et al. [18] used a parallel GA to design optimal Finite 
Word Length (FWL) FIR filters. Gentili et al. [19] used 
genetic algorithms for design of digital FIR filters with 
coefficients constrained to be sums of power-of-two terms. 

   Most of such algorithms require knowledge of desired 
frequency and / or amplitude output from the filter. However, 
this is difficult to obtain for the problem under consideration, 
as the data is sampled at different sampling rates and tests are 
run at different frequencies as well. This is done so because of 
the trade-off between having larger amount of data within the 
limitations of the data acquisition system, and increased 
computation time. Therefore there is a need for filter design 
which can function optimally without a priori knowledge of 
the test conditions.  

In the problem under consideration, the only available data 
is the strain response in the form of text input of strain 
measurement values from all the measurement channels. Most 
of the algorithms discussed above require sophisticated 
knowledge of filtering and/or signal processing fundamentals 
to be able to use them. The laboratory technician collecting 
the HMA complex modulus test data may not have such a 
technical background, which is frequently the case. 

However, as the Genetic Algorithm is a blind search 
algorithm, it does away with the need for specialized 
knowledge of the application area, if implemented 
appropriately. The unique contribution of this paper is that the 
methodology developed herein filters noise from the HMA 
modulus test data even in the absence of any knowledge of the 
desired signal output and can be used without specialized 
domain knowledge of filtering. Thus, it has the potential to be 
implemented commercially for rapid, real-time, and routine 
analysis of HMA complex modulus (E*) test data. 
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IV. APPROACHES TO FILTER DESIGN 
A one-dimensional digital filter function Y = FILTER (B, 

A, X) filters the data in vector X with the filter described by 
vectors A and B to create the filtered data Y. The filter is a 
"Direct Form II Transposed" implementation of the standard 
difference equation: 
 

)()1(...)1()2()()1(....)1()2()()1()()1( nanynaanyanbnxnbbnxbnxbnya −+−−−−−+++−+=  
 

Thus, filter design involves the determination of the 
coefficients of the two vectors A and B, which can be done 
using several methods. 

MATLAB has standard functions for designing digital 
filters given the parameter values. The Chebyshev type II low 
pass filter can be designed using the function ‘cheby2’. This 
function takes the following three parameters as input: 

1. Filter order (N): it should be between 3 and 18. It 
has been found that higher order filters do not 
produce good results with data obtained from E* 
tests.  

2. Stop band ripple (R): it should be between 1 and 64 
decibels. 

3. Pass band edge frequency (Wn): theoretically it 
should be between 0.0 and 1.0. 

The function ‘cheby2’ returns the filter coefficients in 
length N+1 vectors B (numerator) and A (denominator). GA 
was used to optimize the suitability of the filter for any given 
data set by choosing the best possible combination of above-
mentioned parameter values. Two different GA strategies 
were applied to do this. The goal was to determine which 
strategy would provide the most efficient and robust method 
for optimization. The methods applied were: 

1. Binary coded genetic algorithm using mutation and 
crossover 

2. Real coded GA with mutation and crossover 
3. 1 + 1 evolution strategy 
4. Evolution Strategy with Covariance Matrix 

Adaptation [22,23] 
The first approach relies on the use of standard functions 

available in MATLAB®. However, to be able to design filters 
without the necessity of MATLAB would involve determining 
filter coefficients that cheby2 function calculates. The second 
approach, therefore, focuses on determining optimal 
coefficients for the multipliers in the numerator (B) and 
denominator (A) of a filter function. However, the number of 
these coefficients in any filter depends on the order of the 
filter. All the above mentioned four GA strategies were also 
tested with this approach. 

V. FUNCTION EVALUATION AND FITNESS FUNCTION 
The first step in function evaluation involves designing a 

filter with given parameter values. Then the designed filter is 
applied to a given E* test data set. Then the fitness of the 
filtered test data is evaluated. 

The objective of filtering is to get a smooth response. At the 

same time the output should be as close to the measured 
response as possible, otherwise the filtering process may 
introduce attenuation which amounts to loss of information. 
Several criteria for measuring smoothness were considered. 
But in order to achieve robustness over variegated types of 
data, the criterion that was selected was a function of the total 
number of instances where the slope changes sign (which are 
called as peaks). Therefore, it is desirable to have the same 
number of peaks in the filtered data as the sinusoidal cycles of 
loading that the specimen was subjected to. Lesser number of 
peaks would indicate attenuation as a result of over-filtering. 
As the number of peaks goes below the optimal value the 
filtered data would be farther away from the original data. But 
the number of peaks also would vary for different data sets. 
The actual deviation of the output response from original data 
is the other criterion in this problem. Therefore, this is a case 
of multi-objective optimization. 

To account for the multiple objectives it was decided that 
the two objectives namely, number of peaks and deviation (of 
the filtered data form the original data) be combined with 
appropriate weights to define fitness value. Criterion for 
deviation was calculated by computing the l2-norm, the 
original data being the reference. 

There is a slight change in the fitness function used with 
different strategies which is discussed later. This had to be 
done because different strategies responded more favorably to 
slightly different fitnesses. 

VI. DESIGNING THE CHEBYSHEV TYPE II FIR LOW PASS 
FILTER 

As discussed previously, the Chebyshev function requires 
three parameters to generate the coefficients of a filter: order, 
ripple and edge band frequency. Initially order was fixed, and 
ripple and edge band frequency were the only parameters to 
be optimized.  

 
 
 

TABLE I 
GA PARAMETERS FOR BINARY-ENCODING FOR 2 INPUT PARAMETERS TO THE 

CHEBYSHEV  FUNCTION  

Selection Proportionate (s= 2 and with 
replacement), Tournament 

Crossover Single point-crossover, p = 
0.60 

Mutation p = 0.01 

Len. of 
chromosome 20 

Population 
size 100 

No. of 
generations 100 
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This was because the inclusion of order as a parameter 
makes the problem much more complex as the order 
determines the number of variables to be optimized itself. But 
the quality of filtering would vary with order. Therefore, order 
was also included as a parameter to be optimized. The length 
of each chromosome was 20 in the case of binary-coded GA 
(Table I). 

The GA with order as a variable was implemented as a real-
coded GA as well. The length of each chromosome was 3 
(Table II). Mutation was accomplished by generating a normal 
random number with a mean of zero for all the parameters. 
The standard deviations for order, ripple and edge band 
frequency were 1, 5 and 0.10 respectively. 

Since this problem required a chromosome of size three 
only it was expected that evolutionary strategies may also 
work. The advantage with evolutionary strategies is that they 
need much fewer function evaluations as compared to binary 
or real GA. The 1 + 1 evolutionary strategy (Table III) worked 
well for problems with fixed order, but failed to converge 
when order also became an input parameter. 

The implementation of the Covariance Matrix Adaptation-
Evolutionary Strategy (CMA-ES) has led to significant 
advancements in efficiency and robustness in many 
applications. In many cases CMA-ES has been found to give 
linear time complexity. Another advantage of ES is that they 
can be easily parallelized [21]. CMA-ES can also reliably 
adapt to an arbitrarily oriented scaling of the search space 
[23]. Therefore, CMA-ES approach was well-suited to the 
particular problem at hand. For more details the reader is 
encouraged to read the cited papers. 
 

VII. DESIGNING A GENERIC FILTER IMPLEMENTED AS A FIR 
LOW PASS FILTER 

As stated earlier generic digital filters are a set of 
coefficients that are used to process noisy data and get 
smoothened output. These filters are characterized by order, 
the number of terms for numerator and denominator, and the 

coefficients themselves. Initially a binary simple GA code was 
written, which would optimize the parameters for a fixed 
order of the filter. That is the GA would only optimize the 
filter coefficients. In the next phase, order of the filter was 
also introduced as a parameter to be optimized. Since the 
number of filter coefficients, depends on the order of the filter, 
the length of each chromosome is not fixed. Rather it depends 
on the order, which is itself a parameter to be optimized by the 
GA. The order could vary from 3 to 18. Therefore, the number 
of filter coefficients could vary from 5 to 28. 

The initiation module first generates the order of the 
individual, and then based on the order, generates the required 
number of coefficients for each individual. Using single-point 
crossover between individuals of different lengths could yield 
invalid individuals. Therefore for solving this problem, two-
point crossover was implemented, with both the points of 
crossover being less than the length of the shorter of the two 
parents. This would ensure that the crossover would not yield 
invalid (in terms of chromosome length) individuals. Mutation 
was also performed once the crossover operation was 
performed. While performing both mutation and crossover, it 
was ensured that the order is not varied. However this should 
not be a serious limitation. Because the population size is 100 
and the possible number of orders is only 16, each order 
would be represented in the initial population. 

An accuracy of three decimal places requires that each of 
the coefficients be represented by 10 bits and the order be 
represented by 4 bits (for a range of 3 to 8). Therefore in the 
binary-coded GA, the length of the chromosome could vary 
from 54 to 284 bits. 

In real-coded GA the length of the chromosome could vary 
from 6 to 29. In the case of real-coded GA the mutation was 
accomplished by generating a normal random number with a 
mean of zero and standard deviation of 0.10. 

CMA-ES strategy was applied to this problem as well. 
Default values as described in the last section were used for 
the parameters. 

TABLE II 
GA PARAMETERS FOR BINARY-ENCODING FOR 3 INPUT PARAMETERS TO THE 

CHEBYSHEV  FUNCTION  

Selection Proportionate (s= 2 and with 
replacement), Tournament 

Crossover Single point-crossover, p = 
0.60 

Mutation p = 0.01 

Len. of 
chromosome 3 

Population 
size 100 

No. of 
generations 100 

 

TABLE III 
GA PARAMETERS FOR BINARY-ENCODING FOR 1 + 1 ES ENCODING WITH 2 

INPUT PARAMETERS TO THE CHEBYSHEV  FUNCTION  

Selection Proportionate (s= 2 and with 
replacement), Tournament 

Crossover Single point-crossover, p = 
0.60 

Mutation p = 0.01 

Len. of 
chromosome 3 

Population 
size 100 

No. of 
generations 100 
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VIII. DISCUSSION OF RESULTS 
Results for running all the algorithms on two typical data 

files are discussed in this section. These two files differ in the 
magnitude of the strain and sampling rate used while 
performing the dynamic modulus test. File 1 has around 2000 
data points and corresponds to a high sampling rate while, File 
2 has nearly 600 data points and corresponds to a medium 
sampling rate. For each data file the actual noisy data in 
shown in gray and the cleaned data in black. The bottom plot 
in each figure shows the mean fitness for each generation in 
the case of binary-coded GA, real-coded GA while in the case 
of CMA-ES approach it shows the max fitness in each 
generation. Only selected results are presented in this section 
due to space constraints. 

Figs. 3, 4 and 5 display the results obtained using the 
binary-coded GA, real-coded GA (for the sake of brevity only 
the results for tournament selection are presented) and the 
CMA-ES approach for designing Chebyshev type II Low Pass 
Filter. 

 

0

50

100

150

200

250

0 500 1000 1500 2000

Da t a  I ndex

 
 

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Ge ne r a t i on

 
Fig. 3 Results obtained from binary-coded GA for Chebyshev Type 

II FIR Filter for File 1  
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Fig. 4 Results obtained from real-coded GA for Chebyshev Type 

II FIR Filter for File 1 
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Fig. 5 Results obtained from CMA-ES approach for Chebyshev 

Type II FIR Filter for File 1 
 
The actual fitness values of the end results are not 

compared because the weights used for deviation and peaks in 
the fitness function were slightly different depending on the 
data file and also the approach used.  

It can be seen that maximum strain in data file 1, reaches 
240 microstrain while in data file 2, it only reaches 115 
microstrain. But the ideal number of peaks in both the files is 
the same. Naturally, different weights had to be used for 
deviation in the fitness function evaluation of the two files. 
Also in the CMA-ES approach it was found that obtaining 
average deviation by dividing total deviation using n0.3 instead 
of n resulted in better convergence. This is because the 
deviations are maximum at the crests and troughs and are less 
in all the other points. Therefore averaging it over all the 
points resulted in underestimating the deviation. Nevertheless, 
it can be seen from Figs. 3 through 5 that all the three 
approaches resulted in similarly clean data. Also all of them 
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reached pretty much the stable fitness in approximately 20 
generations. However, the number of fitness evaluations 
performed differs significantly. In the case of binary and real-
coded GA, 100 function evaluations are performed in each 
generation. While in the case of CMA-ES approach only 4 
(λ=4) function evaluations are performed in each generation. 
Therefore the CMA-ES approach, took the least time for 
converging to the solution. 

These approaches were tested on more data files as well. It 
was found that the CMA-ES approach was more consistent in 
cleaning the different data files. This also showed that the 
CMA-ES approach is not only more efficient but also more 
robust than the binary-coded and real-coded approaches when 
used for designing Chebyshev type II Low Pass Filter. 

Fig. 6 shows the results obtained using binary-coded GA 
for designing a generic Low Pass FIR Filter. Due to space 
constraints, the results for other approaches could not be 
presented. 
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Fig. 6 Results obtained from binary-coded GA for generic Low 

Pass Filter for File 1 
 

In the case of Chebyshev filter all the three approaches 
resulted in similar results. But in the case of generic low pass 
filter, it was found that only CMA-ES approach converged to 
good results. Both the binary-coded and real-coded 
approaches performed poorly and inconsistently. The binary-
coded GA gave reasonably good results for data file 1 but the 
deviation is very significant in the case of data file 2. In the 
case of data file 2 for real-coded GA it was run for 200 
generations because the mean fitness did not stabilize in 100 
generations. Nevertheless the deviation was significant. Thus, 
the deviation in the results of the real-coded GA is high in 
both the cases. 

It should be noted that in the case of generic filter design, 

the chromosome lengths are variable. In the case of real-coded 
and binary-coded GA, when the crossover occurs between 
chromosomes representing two completely different orders, 
the alleles exchanged most likely would represent completely 
different parameters and possible different number of 
parameters. Therefore crossover amongst different orders 
might be the reason for the poor performance of real-coded 
and binary-coded GA.  

A better approach would have been to evolve individuals of 
each order separately, for say, n generations and then select 
the population for the next generation based on fitness. Then 
once again, segregate the individuals based on order and let 
them evolve independently for another n generations. Due to 
lack of time, this approach was not implemented. However, 
the authors believe that if this approach were implemented 
both the real-coded and binary-coded GA would perform 
better.  

Also in the case of real-coded GA a single step size was 
used for all the parameters. This might have caused further 
deterioration in the performance of the real-coded GA. The 
CMA-ES approach adapts the step size and so it would be 
expected to perform better than these two approaches. 

 
A four-layer feedforward network consists of a set of 

sensory units (source nodes) that constitute the input layer, 
two hidden layer of computation nodes, and an output layer of 
computation nodes. The following notation is generally used 
to refer to a particular type of architecture that has two hidden 
layers: (# inputs)-(# hidden neurons)-(# hidden neurons)-(# 
outputs). For example, the notation 10-40-40-3 refers to an 
ANN architecture that takes in 10 inputs (features), has 2 
hidden layers consisting of 40 neurons each, and produces 3 
outputs.  

IX. CONCLUSION 
The dynamic or complex modulus (E*) test is considered to 

be a mechanistically based laboratory test to reliably 
characterize the strength and load-resistance of Hot-Mix 
Asphalt (HMA) mixes used in the construction of roads. The 
goal of the work presented in this paper is to develop and 
compare automated evolutionary computational techniques to 
filter test noise in the collection of data for the HMA complex 
modulus test. 

In this study, different Genetic Algorithm (GA) strategies 
for designing digital filters for HMA complex modulus test 
data were evaluated. Two types of digital filter were 
considered: Chebyshev type II FIR low pass filter and the 
generic filter implemented as a FIR low pass filter.  

For Chebyshev type II Low Pass filter, the binary-coded, 
real-coded GA and the Covariance Matrix Adaptation-
Evolutionary Strategy (CMA-ES) approach resulted in similar 
results. However, the CMA-ES approach was more robust and 
computationally efficient. In the case of generic Low Pass 
filter, only CMA-ES approach converged to good results. 
Possible reasons for the poor performance of binary-coded 
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and real-coded GAs were stated and some solutions to 
possibly overcome them have been suggested. The CMA-ES 
approach was also found to be computationally most efficient 
in the case of generic filter design. The study demonstrated 
that GAs are indeed useful approaches to filtering data 
obtained from the HMA complex modulus test. 
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