**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30067

##### Relative Mapping Errors of Linear Time Invariant Systems Caused By Particle Swarm Optimized Reduced Order Model

**Authors:**
G. Parmar,
S. Mukherjee,
R. Prasad

**Abstract:**

**Keywords:**
Order reduction,
Particle swarm optimization,
Relative mapping error,
Stability.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1073100

**References:**

[1] R. Genesio and M. Milanese, "A note on the derivation and use of reduced order models", IEEE Trans. Automat. Control, Vol. AC-21, No. 1, pp. 118-122, February 1976.

[2] M. Jamshidi, Large Scale Systems Modelling and Control Series, New York, Amsterdam, Oxford, North Holland, Vol. 9, 1983.

[3] S. K. Nagar and S. K. Singh, "An algorithmic approach for system decomposition and balanced realized model reduction", Journal of Franklin Inst., Vol. 341, pp. 615-630, 2004.

[4] V. Singh, D. Chandra and H. Kar, "Improved Routh Pade approximants: A computer aided approach", IEEE Trans. Automat. Control, Vol. 49, No.2, pp 292-296, February 2004.

[5] S. Mukherjee, Satakshi and R.C.Mittal, "Model order reduction using response-matching technique", Journal of Franklin Inst., Vol. 342 , pp. 503-519, 2005.

[6] B. Salimbahrami, and B. Lohmann, "Order reduction of large scale second-order systems using Krylov subspace methods", Linear Algebra Appl., Vol. 415, pp. 385-405, 2006.

[7] E. Layer, "Mapping error of simplified dynamic models in electrical metrology", Proc. 16th IEEE Inst. and Meas. Tech. Conf., Vol. 3, pp. 1704-1709, May 24-26, 1999.

[8] E. Layer, "Mapping error of linear dynamic systems caused by reduced order model", IEEE Trans. Inst. and Meas., Vol. 50, No. 3, pp. 792-799, June 2001.

[9] C. Hwang, "Mixed method of Routh and ISE criterion approaches for reduced order modelling of continuous time systems", Trans. ASME, J. Dyn. Syst. Meas. Control, Vol. 106, pp. 353-356, 1984.

[10] S. Mukherjee and R. N. Mishra, "Order reduction of linear systems using an error minimization technique", Journal of Franklin Institute, Vol. 323, No. 1, pp. 23-32, 1987.

[11] S. S. Lamba, R. Gorez an 1987.d B. Bandyopadhyay, "New reduction technique by step error minimization for multivariable systems", Int. J. Systems Sci., Vol. 19, No. 6, pp. 999-1009, 1988.

[12] Mukherjee and R.N. Mishra, "Reduced order modeling of linear multivariable systems using an error minimization technique", Journal of Franklin Inst., Vol. 325, No. 2, pp. 235-245, 1988.

[13] N.N. Puri and D.P. Lan, "Stable model reduction by impulse response error minimization using Mihailov criterion and Pade-s approximation", Trans. ASME, J. Dyn. Syst. Meas. Control, Vol. 110, pp. 389-394, 1988.

[14] P. Vilbe and L.C. Calvez, "On order reduction of linear systems using an error minimization technique", Journal of Franklin Inst., Vol. 327, pp. 513-514, 1990.

[15] A.K. Mittal, R. Prasad and S.P. Sharma, "Reduction of linear dynamic systems using an error minimization technique", Journal of Institution of Engineers IE(I) Journal - EL, Vol. 84, pp. 201-206, March 2004.

[16] G.D. Howitt and R. Luus, "Model reduction by minimization of integral square error performance indices", Journal of Franklin Inst., Vol. 327, pp. 343-357, 1990.

[17] J. Kennedy and R. C. Eberhart, "Particle swarm optimization", IEEE Int. Conf. on Neural Networks, IV, 1942-1948, Piscataway, NJ, 1995.

[18] J. Kennedy and R. C. Eberhart, Swarm intelligence, 2001, Morgan Kaufmann Publishers, San Francisco.

[19] R. C. Eberhart and Y. Shi, "Particle swarm optimization: developments, applications and resources", Congress on evolutionary computation, Seoul Korea, pp. 81-86, 2001.

[20] T.N. Lucas, "Further discussion on impulse energy approximation", IEEE Trans. Automat. Control, Vol. AC-32, No. 2, pp. 189-190, February 1987.

[21] Y. Shamash, "Linear system reduction using Pade approximation to allow retention of dominant modes", Int. J. Control, Vol. 21, No. 2, pp. 257-272, 1975.

[22] M. F. Hutton and B. Friedland, "Routh approximation for reducing order of linear, time invariant systems", IEEE Trans. Automat Control, Vol. AC-20, No. 3, pp. 329-337, June 1975.

[23] V. Krishnamurthy and V. Seshadri, "Model reduction using the Routh stability criterion", IEEE Trans. Automat. Control, Vol. AC-23, No. 4, pp. 729-731, August 1978.

[24] J. Pal, "Stable reduced order Pade approximants using the Routh Hurwitz array", Electronic Letters, Vol. 15, No. 8, pp.225-226, April 1979.

[25] T.C. Chen, C.Y. Chang and K.W. Han, "Stable reduced order Pade approximants using stability equation method", Electronic Letters, Vol. 16, No. 9, pp. 345-346, 1980.

[26] P.O. Gutman, C.F. Mannerfelt and P. Molander, "Contributions to the model reduction problem", IEEE Trans. Automat. Control, Vol. AC- 27, No. 2, pp. 454-455, April 1982.

[27] T.N. Lucas, "Factor division; a useful algorithm in model reduction", IEE Proceedings, Vol. 130, No. 6, pp. 362-364, November 1983.

[28] R. Prasad and J. Pal, "Stable reduction of linear systems by continued fractions", Journal of Institution of Engineers IE(I) Journal - EL, Vol. 72, pp. 113-116, October 1991.

[29] M. G. Safonov, R. Y. Chiang and D. J. N. Limebeer, "Optimal Hankel model reduction for nonminimal systems", IEEE Trans. Automat Control, Vol. 35, No.4, pp 496-502, April 1990.