Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32845
Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani


The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281


[1] Sowmyayani. S, 2022, Machine Learning. In Kumar, A., Sagar, S., Kumar, T.G. and Kumar, K.S. eds., 2022. Prediction and Analysis for Knowledge Representation and Machine Learning. CRC Press.
[2] Sowmyayani, S., 2022. A Handbook on Healthcare Applications. A Handbook on Healthcare Applications, BPI Publications, ISBN: 978-93-5547-948-8, pp.1-42.
[3] D. N. Louis et al., “The 2007 who classification of tumours of the central nervous system,” Acta Neuropathologica, vol. 114, no. 2, pp. 97–109, 2007.
[4] Kleihues, P., Louis, D.N., Scheithauer, B.W., Rorke, L.B., Reifenberger, G., Burger, P.C. and Cavenee, W.K., 2002. The WHO classification of tumors of the nervous system. Journal of Neuropathology & Experimental Neurology, 61(3), pp.215-225.
[5] U.R., Chau, K. C., Ng, E. Y. K., Wei, W., and Chee, C., “Application of higher order spectra for the identification of diabetes retinopathy stages”. J. Medsyst.
[6] Song, X., Chen, Y., Song, K., and Chen, Y., “A Computer – based diagnosis of glaucoma using an artificial neural network”. Proceedings of 17th Annual Conference IEEE Engineering in Medicine and Biology, 1, 847-848, 1995.
[7] Viranee Thongnuch, Bunyarit Uyyanonvara, “Automatic optic disc detection from low contrast retinal images of ROP infant using mathematical morphology”, 2000.
[8] Nayak, J. Bhat, P.S., Acharya, U. R., Lim, C.M., and Kagathi, M., “Automated identification of different stages of diabetic retinopathy using digital fundus images”. J. Med. Sys., 2008.
[9] L. Tang, et al., “Robust Multiscale Stereo Matching from Fundus Images with Radiometric Differences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2245–2258, Nov. 2011.
[10] T. Nakagawa, et al., “Quantitative depth analysis of optic nerve head using stereo retinal fundus image pair,” J. Biomed. Opt, vol. 13, no. 6, pp. 064026–064026–10, 2008.
[11] URL: http://www.who.int/whosis/mort/en/index.html, 2006.
[12] R.G. Bird, T.W. Wallace, B.C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology, vol. 184, pp. 613–617,1992
[13] H. Burhenne, L. Burhenne, F. Goldberg, T. Hislop, A.J. Worth, P.M. Rebbeck, and L. Kan, “Interval breast cancers in the screening mammography program of British Columbia: Analysis and classification,” Am. J Roentgenol., vol. 162, pp.1067–1071,1994
[14] Lee SK, Lo CS, Wang CM, Chung PC, Chang CI, Yang CW, Hsu PC: A computer-aided design mammography screening system for detection and classification of microcalcifications. Int J Med Inform 60(1):29–57, 2000
[15] Sowmyayani, S. and Murugan, V., 2021. Multi-Type Classification Comparison of Mammogram Abnormalities. International Journal of Image and Graphics, 21(03), p.2150027.
[16] World Health Organization, World Health Organization. Ageing and Life Course Unit, 2008. WHO global report on falls prevention in older age. World Health Organization.
[17] Sowmyayani, S., Murugan, V. and Kavitha, J., 2021. Fall detection in elderly care system based on group of pictures. Vietnam Journal of Computer Science, 8(02), pp.199-214.
[18] Sowmyayani, S. and Rani, P.A.J., 2019. An efficient fall detection method for elderly care system. International Journal of Computer and Information Engineering, 13(3), pp.173-177.
[19] World Health Organization, 2015. Global health observatory data repository. 2011. Number of deaths (World) by cause.
[20] “Melanoma: Statistics,” American Cancer Society, Jul. 2016. (Online). Available: https://www.cancer.net/cancer-types/melanoma/statistics. Accessed 6 Nov. 2018
[21] “Melanoma skin cancer,” European Commission, 2017. (Online). Available: https://ec.europa.eu/research/health/pdf/factsheets/melanoma_skin_cancer.pdf. Accessed 6 Nov. 2018
[22] Seyed HH, Mohammadamin D. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice. 2017;4(4):127–129.
[23] Yu Lequan, Chen Hao, Dou Qi, Qin Jing, Heng Pheng-Ann. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Transactions on Medical Imaging. 2017; 36(4): 994–1004. doi: 10.1109/TMI.2016.2642839.
[24] Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542:115–118. doi: 10.1038/nature21056.
[25] M. Kunz and W. Stolz, “ABCD rule,” Dermoscopedia Organization, 17 Jan. 2018. (Online). Available: https://dermoscopedia.org/ABCD_rule. Accessed 11 Nov. 2018
[26] A. A. A. Al-abayechi, X. Guo, W. H. Tan and H. A. Jalab, “Automatic skin lesion segmentation with optimal colour channel from dermoscopic images,” ScienceAsia, vol. 40S, pp. 1–7, 2014.
[27] D. N. H. Thanh, U. Erkan, V. B. S. Prasath, V. Kumar and N. N. Hien, “A Skin Lesion Segmentation Method for Dermoscopic Images Based on Adaptive Thresholding with Normalization of Color Models,” in IEEE 2019 6th International Conference on Electrical and Electronics Engineering, Istanbul, 2019.
[28] D. N. H. Thanh, N. N. Hien, V. B. S. Prasath, U. Erkan, K. Adytia: Adaptive Thresholding Skin Lesion Segmentation with Gabor Filters and Principal Component Analysis,” in The 4th International Conference on Research in Intelligent and Computing in Engineering RICE'19, Hanoi, 2019
[29] D. N. H. Thanh, N. N. Hien, V. B. S. Prasath, L. T. Thanh and N. H. Hai, “Automatic Initial Boundary Generation Methods Based on Edge Detectors for the Level Set Function of the Chan-Vese Segmentation Model and Applications in Biomedical Image Processing,” in The 7th International Conference on Frontiers of Intelligent Computing: Theory and Application (FICTA-2018), Danang, 2018.
[30] Z. Ma and J. M. R. S. Tavares, “Segmentation of Skin Lesions Using Level Set Method,” in Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (Lecture Notes in Computer Science, vol 8641), Springer, 2014, pp. 228–233.
[31] Wong A., Scharcanski J., Fieguth P. Automatic Skin Lesion Segmentation via Iterative Stochastic Region Merging. IEEE Transactions on Information Technology in Biomedicine. 2011;15(6):929–936. doi: 10.1109/TITB.2011.2157829.
[32] Al-Masni MA, Al-Antari MA, Choi MT, Han SM, Kim TS. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Computer Methods and Programs in Biomedicine. 2018;162:221–231. doi: 10.1016/j.cmpb.2018.05.027.
[33] M. Berseth, “ISIC 2017-Skin Lesion Analysis Towards Melanoma,” arXiv:1703.00523, 2017.
[34] Y. Yuan, “Automatic skin lesion segmentation with fully convolutional-deconvolutional networks,” arXiv:1703.05165, 2017.
[35] L. Bi, J. Kim, E. Ahn, D. Feng and M. Fulham, “Semi-automatic skin lesion segmentation via fully convolutional networks,” in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, 2017.
[36] Jaisakthi SM, Mirunalini P, Aravindan C. Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms. IET Computer Vision. 2018;12(8):1088–1095.
[37] Burdick J, Marques O, Weinthal J, Furht B. Rethinking Skin Lesion Segmentation in a Convolutional Classifier. Journal of Digital Imaging. 2018;31(4):435–440.
[38] H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015)
[39] F. Fumero et al., “RIM-ONE: An open retinal image database for optic nerve evaluation,” in Intl. Symposium on Computer-Based Medical Systems (CBMS), 2011.
[40] A. Diaz-Pinto, S. Morales, V. Naranjo, T. Köhler, J. M. Mossi, and A. Navea, “Cnns for automatic glaucoma assessment using fundus images: an extensive validation,” Biomedical engineering online, vol. 18, no. 1, p. 29, 2019.
[41] Z. Zhang, F. S. Yin, J. Liu, W. K. Wong, N. M. Tan, B. H. Lee, J. Cheng, and T. Y. Wong, “Origa-light: An online retinal fundus image database for glaucoma analysis and research,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010, pp. 3065–3068.
[42] A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson, “Robust vessel segmentation in fundus images,” International journal of biomedical imaging, vol. 2013, 2013.
[43] J. Sivaswamy, A. Chakravarty, G. Datt Joshi, T. Abbas Syed, JSM Biomedical Imaging Data Papers, A Comprehensive Retinal Image Dataset for the Assessment of Glaucoma from the Optic Nerve Head Analysis, JSM Biomed Imaging Data Pap 2 (1) (2015) 1–7.
[44] S. Choi, “sjchoi86-HRF Database,” github.com/yiweichen04/retina_dataset, Accessed: 09-09-2019.
[45] P. Porwal, S. Pachade, R. Kamble, M. Kokare, G. Deshmukh, V. Sahasrabuddhe, and F. Meriaudeau, ‘‘Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening research,’’ Data, vol. 3, no. 3, p. 25, Jul. 2018
[46] Staal, J.J. Abramoff, M.D. Niemeijer, M. Viergever, and M.A. Ginneken, B. 2004. Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging. 501-509.
[47] Messidor-2 Data is Available for Researchers in the Public Domain At. Accessed: Jun. 18, 2019. (Online). Available: https://medicine.uiowa.edu/eye/abramoff
[48] The new MIAS Database. http://www.wiau.man.ac.uk/services/MIAS/MIASfaq.html.
[49] M. Heath et al., “The digital database for screening mammography,” in Proc. of the 5th Int. Workshop on Digital Mammography 431–434 (2000).
[50] Sung, J.; Ponce, C.; Selman, B.; Saxena, A. Unstructured human activity detection from rgbd images. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, 14–18 May 2012; pp. 842–849
[51] Gasparrini, S.; Cippitelli, E.; Gambi, E.; Spinsante, S.; Wåhslén, J.; Orhan, I.; Lindh, T. Proposal and experimental evaluation of fall detection solution based on wearable and depth data fusion. In ICT Innovations 2015; Springer: Cham (ZG), Switzerland, 2016; pp. 99–108
[52] Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe, Tsuneo Matsumoto, Takeshi Kobayashi, Ken-ichi Komatsu, Mitate Matsui, Hiroshi Fujita, Yoshie Kodera, and Kunio Doi. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. American Journal of Roentgenology, 174(1):71–74, 2000
[53] Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-Ray8: Hospital Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, July 21–26, 2017. Piscataway, NJ: IEEE, 2017; 3462–3471.
[54] Summers RM. NIH Chest X-ray Dataset of 14 Common Thorax Disease Categories. https://nihcc.app.box.com/v/ChestXray-NIHCC/file/220660789610. Accessed May 2019.
[55] http://challenge2017.isic-archive.com/
[56] Amin, J., Sharif, M., Yasmin, M. and Fernandes, S.L., 2020. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 139, pp.118-127.
[57] Saba, T., Mohamed, A.S., El-Affendi, M., Amin, J. and Sharif, M., 2020. Brain tumor detection using fusion of hand crafted and deep learning features. Cognitive Systems Research, 59, pp.221-230.
[58] Rehman, A., Khan, M.A., Saba, T., Mehmood, Z., Tariq, U. and Ayesha, N., 2021. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture. Microscopy Research and Technique, 84(1), pp.133-149.
[59] Yu, S., Xiao, D., Frost, S. and Kanagasingam, Y., 2019. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Computerized Medical Imaging and Graphics, 74, pp.61-71.
[60] Serte, S. and Serener, A., 2019, October. A generalized deep learning model for glaucoma detection. In 2019 3rd International symposium on multidisciplinary studies and innovative technologies (ISMSIT) (pp. 1-5). IEEE.
[61] Bajwa, M.N., Singh, G.A.P., Neumeier, W., Malik, M.I., Dengel, A. and Ahmed, S., 2020, July. G1020: A Benchmark Retinal Fundus Image Dataset for Computer-Aided Glaucoma Detection. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.
[62] Pour, A.M., Seyedarabi, H., Jahromi, S.H.A. and Javadzadeh, A., 2020. Automatic detection and monitoring of diabetic retinopathy using efficient convolutional neural networks and contrast limited adaptive histogram equalization. IEEE Access, 8, pp.136668-136673.
[63] Kanjanasurat, I., Purahong, B., Pintavirooj, C., Satayarak, N. and Benjangkaprasert, C., 2020, September. Blood Vessel Extraction and Optic Disk Localization for Diabetic Retinopathy. In Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technology (pp. 112-116).
[64] Arumugam, K., 2021. Chaotic Duck Traveler Optimization (cDTO) Algorithm for Feature Selection in Breast Cancer Dataset Problem. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(4), pp.250-262.
[65] Agarwal, R., Diaz, O., Lladó, X., Yap, M.H. and Martí, R., 2019. Automatic mass detection in mammograms using deep convolutional neural networks. Journal of Medical Imaging, 6(3), p.031409.
[66] Martínez-Villaseñor, L., Ponce, H., Brieva, J., Moya-Albor, E., Núñez-Martínez, J. and Peñafort-Asturiano, C., 2019. UP-fall detection dataset: A multimodal approach. Sensors, 19(9), p.1988.
[67] Gaál, G., Maga, B. and Lukács, A., 2020. Attention u-net based adversarial architectures for chest x-ray lung segmentation. arXiv preprint arXiv:2003.10304.
[68] Majkowska, A., Mittal, S., Steiner, D.F., Reicher, J.J., McKinney, S.M., Duggan, G.E., Eswaran, K., Cameron Chen, P.H., Liu, Y., Kalidindi, S.R. and Ding, A., 2020. Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology, 294(2), pp.421-431.
[69] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H. and Halpern, A., 2018, April. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 168-172). IEEE.