Search results for: deep learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2313

Search results for: deep learning

903 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
902 Deactivation of Cu - Cr/γ-alumina Catalysts for Combustion of Exhaust Gases

Authors: Krasimir Ivanov, Dimitar Dimitrov, Boyan Boyanov

Abstract:

The paper relates to a catalyst, comprising copperchromium spinel, coated on carrier γ-Al2O3. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. It was found that the activity of carbon monoxide, DME, formaldehyde and methanol oxidation reaches a maximum at an active component content of 20 – 30 wt. %. Temperature calcination at 500oC seems to be optimal for the γ– alumina supported CuO-Cr2O3 catalysts for CO, DME, formaldehyde and methanol oxidation. A three months industrial experiment was carried out to elucidate the changes in the catalyst composition during industrial exploitation of the catalyst and the main reasons for catalyst deactivation. It was concluded that the CuO–Cr2O3/γ–alumina supported catalysts have enhanced activity toward CO, DME, formaldehyde and methanol oxidation and that these catalysts are suitable for industrial application. The main reason for catalyst deactivation seems to be the deposition of iron and molybdenum, coming from the main reactor, on the active component surface.

Keywords: catalyst deactivation, CuO-Cr2O3 catalysts, deep oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4509
901 A Survey of Business Component Identification Methods and Related Techniques

Authors: Zhongjie Wang, Xiaofei Xu, Dechen Zhan

Abstract:

With deep development of software reuse, componentrelated technologies have been widely applied in the development of large-scale complex applications. Component identification (CI) is one of the primary research problems in software reuse, by analyzing domain business models to get a set of business components with high reuse value and good reuse performance to support effective reuse. Based on the concept and classification of CI, its technical stack is briefly discussed from four views, i.e., form of input business models, identification goals, identification strategies, and identification process. Then various CI methods presented in literatures are classified into four types, i.e., domain analysis based methods, cohesion-coupling based clustering methods, CRUD matrix based methods, and other methods, with the comparisons between these methods for their advantages and disadvantages. Additionally, some insufficiencies of study on CI are discussed, and the causes are explained subsequently. Finally, it is concluded with some significantly promising tendency about research on this problem.

Keywords: Business component, component granularity, component identification, reuse performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
900 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats

Authors: Ashly Joseph

Abstract:

Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.

Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
899 Collocation Errors in English as Second Language (ESL) Essay Writing

Authors: Fatima Muhammad Shitu

Abstract:

In language learning, second language learners as well as Native speakers commit errors in their attempt to achieve competence in the target language. The realm of collocation has to do with meaning relation between lexical items. In all human language, there is a kind of ‘natural order’ in which words are arranged or relate to one another in sentences so much so that when a word occurs in a given context, the related or naturally co-occurring word will automatically come to the mind. It becomes an error, therefore, if students inappropriately pair or arrange such ‘naturally’ co–occurring lexical items in a text. It has been observed that most of the second language learners in this research group commit collocation errors. A study of this kind is very significant as it gives insight into the kinds of errors committed by learners. This will help the language teacher to be able to identify the sources and causes of such errors as well as correct them thereby guiding, helping and leading the learners towards achieving some level of competence in the language. The aim of the study is to understand the nature of these errors as stumbling blocks to effective essay writing. The objective of the study is to identify the errors, analyze their structural compositions so as to determine whether there are similarities between students in this regard and to find out whether there are patterns to these kinds of errors which will enable the researcher to understand their sources and causes. As a descriptive research, the researcher samples some nine hundred essays collected from three hundred undergraduate learners of English as a second language in the Federal College of Education, Kano, North- West Nigeria, i.e. three essays per each student. The essays which were given on three different lecture times were of similar thematic preoccupations (i.e. same topics) and length (i.e. same number of words). The essays were written during the lecture hour at three different lecture occasions. The errors were identified in a systematic manner whereby errors so identified were recorded only once even if they occur severally in students’ essays. The data was collated using percentages in which the identified numbers of occurrences were converted accordingly in percentages. The findings from the study indicate that there are similarities as well as regular and repeated errors which provided a pattern. Based on the pattern identified, the conclusion is that students’ collocation errors are attributable to poor teaching and learning which resulted in wrong generalization of rules.

Keywords: Collocations, errors, collocation errors, second language learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7909
898 Contrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging

Authors: Lijiang Wang, Wei Wang, Yuhong Xu

Abstract:

Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and decreasing the absorption and scattering in biological tissues are as yet unresolved problems. In this present study, a novel NIR-reflected multispectral imaging system was developed for upconversion fluorescent imaging in small animals. Based on this system, we have obtained the high contrast images without the autofluorescence when biocompatible UCPs were injected near the body surface or deeply into the tissue. Furthermore, we have extracted respective spectra of the upconversion fluorescence and relatively quantify the fluorescence intensity with the multispectral analysis. To our knowledge, this is the first time to analyze and quantify the upconversion fluorescence in the small animal imaging.

Keywords: Multispectral imaging, near-infrared, upconversion fluorescence imaging, upconversion nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
897 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates

Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer

Abstract:

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
896 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari

Abstract:

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
895 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students

Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee

Abstract:

Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.

Keywords: Hands-on activity, STEM education, computer programming, metal work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
894 A Shallow Water Model for Computing Inland Inundation Due to Indonesian Tsunami 2004 Using a Moving Coastal Boundary

Authors: Md. Fazlul Karim, Mohammed Ashaque Meah, Ahmad Izani M. Ismail

Abstract:

In this paper, a two-dimensional mathematical model is developed for estimating the extent of inland inundation due to Indonesian tsunami of 2004 along the coastal belts of Peninsular Malaysia and Thailand. The model consists of the shallow water equations together with open and coastal boundary conditions. In order to route the water wave towards the land, the coastal boundary is treated as a time dependent moving boundary. For computation of tsunami inundation, the initial tsunami wave is generated in the deep ocean with the strength of the Indonesian tsunami of 2004. Several numerical experiments are carried out by changing the slope of the beach to examine the extent of inundation with slope. The simulated inundation is found to decrease with the increase of the slope of the orography. Correlation between inundation / recession and run-up are found to be directly proportional to each other.

Keywords: Inland Inundation, Shallow Water Equations, Tsunami, Moving Coastal Boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
893 The Estimation of Human Vital Signs Complexity

Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius

Abstract:

Nonstationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based on the interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore, we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables’ interactions.

Keywords: Cardiac diseases, Complex systems theory, ECG analysis, matrix analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
892 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
891 Authentic Leadership, Trust and Work Engagement

Authors: Arif Hassan, Forbis Ahmed

Abstract:

The issue of leadership has been investigated from several perspectives; however, very less from ethical perspective. With the growing number of corporate scandals and unethical roles played by business leaders in several parts of the world, the need to examine leadership from ethical perspective cannot be over emphasized. The importance of leadership credibility has been discussed in the authentic model of leadership. Authentic leaders display high degree of integrity, have deep sense of purpose, and committed to their core values. As a result they promote a more trusting relationship in their work groups that translates into several positive outcomes. The present study examined how authentic leadership contribute to subordinates- trust in leadership and how this trust, in turn, predicts subordinates- work engagement. A sample of 395 employees was randomly selected from several local banks operating in Malaysia. Standardized tools such as ALQ, OTI, and EEQ were employed. Results indicated that authentic leadership promoted subordinates- trust in leader, and contributed to work engagement. Also, interpersonal trust predicted employees- work engagement as well as mediated the relationship between this style of leadership and employees- work engagement.

Keywords: Authentic Leadership, Interpersonal Trust, WorkEngagement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11184
890 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract:

This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords: Maker movement, microcontrollers, learning, projects, course, technology acceptance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
889 A Socio-Ecological Study of Sacred Groves and Memorial Parks: Cases from USA and India

Authors: Ishani Pruthi, William Burch Jr

Abstract:

The concept of sacred and nature have long been interlinked. Various cultural aspects such as religion, faith, traditions bring people closer to nature and the natural environment. Memorial Parks and Sacred Groves are examples of two such cultural landscapes that exist today. The project mainly deals with the significance of such sites to the environment and the deep rooted significance it has to the people. These parks and groves play an important role in biodiversity conservation and environmental protection. There are many differences between the establishment of memorial parks and sacred groves, but the underlying significance is the same. Sentiments, emotions play an important role in landscape planning and management. Hence the people and communities living at these sites need to be involved in any planning activity or decisions. The conservation of the environment should appeal to the sentiments of the people; the need to be 'with nature' should be used in the setting up of memorial forests and in the preservation of sacred groves.

Keywords: Sacred groves, memorial forests, community based natural resource management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
888 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: Used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
887 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akın, İbrahim Aydoğdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
886 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
885 Analysis and Protection of Soil in Controlled Regime Using Techniques Adapted to the Specifics of Precision Agriculture

Authors: Voicu Petre, Oaida Mircea, Surugiu Petru

Abstract:

It is now unanimously accepted that conventional agriculture has led to the emergence and intensification of some forms of soil and environmental degradation, some of which are due to poorly applied or insufficiently substantiated technological measures. For this reason, the elaboration of any agricultural technology requires a deep knowledge of all the factors involved as well as of the interaction relations between them. This is also the way in which the research will be approached in this paper. Despite the fact that at European level the implementation of precision agriculture has a low level compared to some countries located on the American continent, it is emerging not only as an alternative to conventional agriculture but, as a viable way to preserve the quality of the environment in general, and the edaphic environment in particular. This gives an increased importance to the research in this paper through physical, chemical, biological, mineralogical and micromorphological analytical determinations, processing of analytical results, identification of processes, causes, factors, establishment of soil quality indicators and the perspective of measurements from distance by satellite techniques of some of these soil properties (humidity, temperature, pH, N, P, K and so on).

Keywords: Conventional agriculture, environmental degradation, precision agriculture, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
884 Variation of Quality of Roller-Compacted Concrete Based on Consistency

Authors: C. Chhorn, S. H. Han, S. W. Lee

Abstract:

Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.

Keywords: Compacted depth, consistency, international roughness index, pavement, roller-compacted concrete, skid resistance, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
883 Deep Web Content Mining

Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi

Abstract:

The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.

Keywords: Content mining, complex matching, correlation mining, information extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
882 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317
881 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 412
880 Design of Domain-Specific Software Systems with Parametric Code Templates

Authors: Kostyantyn Yermashov, Karsten Wolke, Karl Hayo Siemsen

Abstract:

Domain-specific languages describe specific solutions to problems in the application domain. Traditionally they form a solution composing black-box abstractions together. This, usually, involves non-deep transformations over the target model. In this paper we argue that it is potentially powerful to operate with grey-box abstractions to build a domain-specific software system. We present parametric code templates as grey-box abstractions and conceptual tools to encapsulate and manipulate these templates. Manipulations introduce template-s merging routines and can be defined in a generic way. This involves reasoning mechanisms at the code templates level. We introduce the concept of Neurath Modelling Language (NML) that operates with parametric code templates and specifies a visualisation mapping mechanism for target models. Finally we provide an example of calculating a domain-specific software system with predefined NML elements.

Keywords: software design, code templates, domain-specific languages, modelling languages, generic tools

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
879 Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities

Authors: Chris Fersterer, Col Fay, Tobias Danielmeier, Kat Achterberg, Scott Willis

Abstract:

New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.

Keywords: Community resilience, problem based learning, project based learning, case study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
878 Effect of CW Laser Annealing on Silicon Surface for Application of Power Device

Authors: Satoru Kaneko, Takeshi Ito, Kensuke Akiyama, Manabu Yasui, Chihiro Kato, Satomi Tanaka, Yasuo Hirabayashi, Takeshi Ozawa, Akira Matsuno, Takashi Nire, Hiroshi Funakubo, Mamoru Yoshimoto

Abstract:

As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate.

Keywords: laser, annealing, silicon, recrystallization, thermal distribution, resistivity, finite element method, absorption, melting point, latent heat of fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
877 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures

Authors: A. C. Sarmah

Abstract:

The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.

Keywords: Debye length, Depletion width, flat band capacitance, impurity concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
876 Pilot Study on the Impact of VLE on Mathematical Concepts Acquisition within Secondary Education in England

Authors: Aaron A. R. Nwabude

Abstract:

The research investigates the “impact of VLE on mathematical concepts acquisition of the special education needs (SENs) students at KS4 secondary education sector" in England. The overall aim of the study is to establish possible areas of difficulties to approach for above or below knowledge standard requirements for KS4 students in the acquisition and validation of basic mathematical concepts. A teaching period, in which virtual learning environment (Fronter) was used to emphasise different mathematical perception and symbolic representation was carried out and task based survey conducted to 20 special education needs students [14 actually took part]. The result shows that students were able to process information and consider images, objects and numbers within the VLE at early stages of acquisition process. They were also able to carry out perceptual tasks but with limiting process of different quotient, thus they need teacher-s guidance to connect them to symbolic representations and sometimes coach them through. The pilot study further indicates that VLE curriculum approaches for students were minutely aligned with mathematics teaching which does not emphasise the integration of VLE into the existing curriculum and current teaching practice. There was also poor alignment of vision regarding the use of VLE in realisation of the objectives of teaching mathematics by the management. On the part of teacher training, not much was done to develop teacher-s skills in the technical and pedagogical aspects of VLE that is in-use at the school. The classroom observation confirmed teaching practice will find a reliance on VLE as an enhancer of mathematical skills, providing interaction and personalisation of learning to SEN students.

Keywords: VLE, Mathematical Concepts Acquisition, PilotStudy, SENs, KS4, Education, Teacher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
875 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

Authors: Anupama Pande, Vishik Goel

Abstract:

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
874 Investigating Interference Errors Made by Azzawia University 1st year Students of English in Learning English Prepositions

Authors: Aimen Mohamed Almaloul

Abstract:

The main focus of this study is investigating the interference of Arabic in the use of English prepositions by Libyan university students. Prepositions in the tests used in the study were categorized, according to their relation to Arabic, into similar Arabic and English prepositions (SAEP), dissimilar Arabic and English prepositions (DAEP), Arabic prepositions with no English counterparts (APEC), and English prepositions with no Arabic counterparts (EPAC).

The subjects of the study were the first year university students of the English department, Sabrata Faculty of Arts, Azzawia University; both males and females, and they were 100 students. The basic tool for data collection was a test of English prepositions; students are instructed to fill in the blanks with the correct prepositions and to put a zero (0) if no preposition was needed. The test was then handed to the subjects of the study.

The test was then scored and quantitative as well as qualitative results were obtained. Quantitative results indicated the number, percentages and rank order of errors in each of the categories and qualitative results indicated the nature and significance of those errors and their possible sources. Based on the obtained results the researcher could detect that students made more errors in the EPAC category than the other three categories and these errors could be attributed to the lack of knowledge of the different meanings of English prepositions. This lack of knowledge forced the students to adopt what is called the strategy of transfer.

Keywords: Foreign language acquisition, foreign language learning, interference system, interlanguage system, mother tongue interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5045