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Abstract—Fully reusable spaceplanes do not exist as yet. This
implies that design-qualification for optimized highly-integrated
forebody-inlet configuration of booster-stage vehicle cannot be based
on archival data of other spaceplanes. Therefore, this paper proposes
a novel TIPSO-SVM expert system methodology. A non-trivial
problem related to optimization and classification of hypersonic
forebody-inlet configuration in conjunction with mass-model of the
two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic
machine learning methodology is based on two-step improved
particle swarm optimizer (TIPSO) algorithm and two-step support
vector machine (SVM) data classification method. The efficacy of
method is tested by first evolving an optimal configuration for
hypersonic compression system using TIPSO algorithm; thereafter,
classifying the results using two-step SVM method. In the first step
extensive but non-classified mass-model training data for multiple
optimized configurations is segregated and pre-classified for learning
of SVM algorithm. In second step the TIPSO optimized mass-model
data is classified using the SVM classification. Results showed
remarkable improvement in configuration and mass-model along
with sizing parameters.

Keywords—TIPSO-SVM expert system, TIPSO algorithm, two-
step SVM method, aerothermodynamics, mass-modeling, TSTO
vehicle.

I. BACKGROUND

classical vehicle design process relies heavily on archival

design data for validation of its results. The classical
methodology begins with initial size estimation — an iterative
process that yields geometric parameters such as volume,
wetted area, length etc. for vehicle and the stages. This is
followed by vehicle weight estimation which is also an
iterative process and parameters such as gross take-off/launch
masses, empty masses etc. are obtained. Once mass and sizing
model is complete then aerothermodynamic [1], [2] and
aeroelastic studies [3] are undertaken to refine the
configuration. Throughout these assessments the process relies
greatly on archival (historical) design data of benchmark
vehicles/systems. When optimization is undertaken for the
final configuration its results are again compared with
historical data, if desired improvement has been attained than
approval is accorded to the conceptual design, else the process
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is repeated till desired optimal parameters have been achieved.
The high level of dependence on archival data may be well
justified in the wake of large amount of data available for
benchmark launch vehicles, however the same is not possible
for spaceplanes in either single- or two-stage i.e. SSTO/TSTO
configurations. This is because no real hypersonic fully-
reusable trans-atmospheric vehicle exists as yet. Under this
scenario any methodology based on archival data may not
suffice. Fig. 1 depicts the typical classical design
methodology.

In view of the foregoing in this paper a hybrid heuristic-
intelligent methodology is proposed as an expert system. The
process mitigates the effect of dependence on historical data
and instead uses computational intelligence [4] as its chief
source for verification of results. It is used to solve the non-
trivial problem of evolving a global solution that
simultaneously satisfies optimization needs of highly-
integrated hypersonic forebody-inlet configuration and mass-
model of the corresponding TSTO vehicle. The proposed
methodology optimizes the aerothermodynamic design of
forebody-inlet assembly of the booster stage while
simultaneously optimizing mass distribution for the TSTO
vehicle. It uses a combination of TIPSO algorithm [5], [6] (for
optimization) and a two-step SVM method [7] (for
classification), in a hybrid arrangement, to recursively locate a
global optimal solution for aerothermodynamic parameters of
hypersonic compression component and attendant mass-model
of the corresponding TSTO vehicle. The optimal solution is
treated as a candidate configuration whose efficacy i.e.
suitability is classified using support vector machine
algorithm. This classification methodology acts as an expert
system for mass-modeling parameters to evaluate suitability of
the TSTO configuration. This method has the obvious
advantage of substantially improving the efficiency of design
process by obtaining a truly global optimal solution that
satisfies the high-level integration need through synchronized
optimization and classification of the component and
corresponding vehicle respectively. The TIPSO-SVM expert
system results when evaluated through vehicle sizing analysis
show marked improvement in basic geometrical parameters of
the vehicle.
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Fig. 1 Classical conceptual design approach

II. THE TIPSO-SVM METHODOLOGY

The TIPSO-SVM  optimization and classification
methodology is embedded within the design optimization
framework of SHWAMIDOF-FI program [7]. This tri-
modular program follows the configuration evolution,
optimization and analysis process for forebody-inlet
component and its TSTO vehicle as depicted in Fig. 2 below.
This process has been evolved on the basis of cognitive-
heuristic framework approach [8]. In brief the surrogates of
forebody-inlet configurations are evolved using fast and frugal
heuristic methods. A cognitive DF-APSO decision algorithm
[9] is used to select the baseline configuration which is
heuristically optimized using TIPSO algorithm [5]. The
optimized solution yields aerothermodynamic-geometric
design for compression component and a mass-model for the
TSTO vehicle that constitutes the optimized compression
components. Verification and validation of results are
accomplished by analyzing the output parameters through
SVM classification and high-fidelity CFD solutions. If
acceptance is accorded to verification and validation
parameters then TSTO vehicle sizing is accomplished for
lower stage booster or else the cycle is repeated from
optimization stage. The shaded blocks indicate process
components that constitute the TIPSO-SVM methodology.
This process has several peculiarities which are best
understood by reviewing the optimization-classification
process in detail.
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Fig. 2 Vehicle design process of SHWAMIDOF-FI program
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The TIPSO-SVM hybridized method is depicted at Fig. 3
below. It uses aerothermodynamic data of hypersonic
compression together with mass-model data for TSTO
transatmospheric vehicle and optimizes the solution for
maximization of process efficiencies and minimization of
losses. A training data library of previously optimized mass-
models is stored and when new data on optimization of
vehicle mass-model is generated and passed to SVM it is
classified for suitability by comparison with the stored training
data. If the new data is classified as suitable it is stored and
processed for vehicle sizing and an accepted conceptual
design of vehicle is evolved. In case it fails the classification
test then the data is returned back to optimization stage till an
optimal solution can be achieved.
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Fig. 3 General approach of the TIPSO-SVM expert system

III. TIPSO OPTIMIZATION SCHEME

The TIPSO algorithm wuses 17 solver functions to
simultaneously optimize the aerothermodynamic design of
hypersonic compression system and mass-model of the TSTO
vehicle. Each of the unique solver function acts as objective
functions (OF) and all OFs are related through a single
aggregate objective function (AOF) which must be maximized
for obtaining the MDO (multidisciplinary optimization)
solution. Details of each of the OFs are presented solver wise
as follows:-

A. COne Solver Function
Cp h
fl__( %, )*( ma/x )*‘95 @)

Cp and Cd are pressure and drag coefficients for semi-
elliptical forebody, %,,,, is the maximum height of generating
cone, dR is the difference between the radii for generating and
generated cones while 6s is the flow deflection angle of lower
side of forebody.
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B. Ist Wedge (Ramp) Solver

M, Py

( ﬁujf( A«jf ‘g @
: Td 1d

(2) (%)

Subscripts d and u represent downstream and upstream
conditions across oblique shock wave generated from 1*
wedge ramp. Symbols M, p, p and T represent Mach number,
pressure, density and temperature conditions, while f
represents shock wave angle of planar wedge. This description
holds good for (3) and (4) as well.

C.2nd Wedge (Ramp) Solver

AL AL
() (72),
D.Cowl Solver

e, =, ){(Td ) Tu),e/.}
AR

OSW3
*ﬁ3d

f2:_

OSW1

fé:_

OSW?2

The ref parameters are suitably selected values of Mach
number, temperature and pressure ratios that represent ideal
conditions for flow entering the combustion chamber. These
are framework values that are defined externally through a .zxt
file as input variables for the program.

E. Compression System Solver

f5:_(77c+77KE_g) (5)

Variables 7. and 7y represent compression and kinetic
energy efficiencies while ¢ represents non-dimensional
entropy losses for the hypersonic compression system, such
that ¢ = ds/Cp...

F. Stream Thrust Solver

fo=—(n,*n.) (6)

The overall efficiency 7, represents the overall

thermodynamic performance of the HAP system.

G.Inlet Start-Unstart Solver

s VAR AR VAN
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The symbols A4;, Ay, A; and A, represent inlet cross-section
area, freestream capture area, inlet capture area and throat area
of the inlet respectively while Mi refers to Mach number at
inlet entry.

H.Inlet-Isolator Interaction Solver

s (CANG79| Lo

The numerator term (ps/ps)m. in the square brackets
represents the pressure ratio that could result in a normal
shock wave, while the term (p;/p,) represents the
instantaneous pressure ratio, both across the isolator. The term
Rey is the Reynolds number of the momentum boundary layer.

L Inviscid Aerothermodynamics Solver
Cpys +Cp g +
fo=—| Cl-Cd +Cr+

(L/D),,, ~(A/A;)

((Ry+R,)/L,y) ©

The coefficient terms include pressure (Cp), lift (CI), drag
(Cd) and resultant force (Cr) while L/D ratio is essential to
waverider configuration and (A/A;) are ratios of standoff
distance at a given nose and lip radii (Ry , R;) respectively
across body length (Ljq).

J. Leading Edge Bluntness & Shock Standoff Solver

foe _[(p/ p% S/RC)}*(LM RL)

The term p/p, is the instantaneous pressure ratio across
normal shock region of shock wave, A represents the shock
standoff distance (m), R, is the radius of curvature (m) of the
shock wave while L, and R; represent maximum length (m)
of the shock generation surface and radius (m) of the lip of the
leading edge of cowl.

(10)

K.Shock-Boundary Layer Interaction Solver

(5invis_5%
[(Td/Tu )invis _(Td/Tu )J
Y
[( d/ u)invis_( d/ u):l
m ’ p%d/pu)

Equation (11) represents the measure of variations in flow
deflection angle (J) and flowfield variables temperature (7)
and pressure (p) caused by shock-boundary layer interaction
when compared with equivalent parameters obtained from
inviscid (invis) solution.

+

an

+
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L. Stagnation Point Convective Heat Transfer Solver

R )

Here Ry represents nose radius in meters while subscript 0
represents freestream conditions. This relation is derived using
Buckingham-Pi theorem.

M.  Thermal State of Surface Solver
Sy =—{Pr*Re,*5t, *[ Z,,(1-Z,,) ]} *C,

(12)

(13)

The left hand term represents Prandtl number (Pr), local
Reynolds number (Re,) and local Stanton number (S%,). The
terms Z,, and Z,, are thermal state parameters for freestream
and wall regions. They are derived using Buckingham-Pi
theorem and expressed in (14) below.

(7 *ly

t0 (ILIO*I/OZ)
_(T.*k,)

ZtO - (/uw * Vez)

N. Boundary Layer Solver

L .
f — axial /, __ _ — — — (1 5 )
H (é‘ﬂow + é‘disp + 5m0m + Cf - Xtmn.v )

The J, Cyand X, bar symbols represent average parameter
values for the flow along the lower side of the external
compression surfaces.

N
Il

(14)

O.Hypersonic Viscous Interaction Solver

fom _{(pw/p%p}* K,,,*Rex}

where pressure ratio p,/p, indicates increment in wall pressure
conditions, Cp is the coefficient of pressure, Kn is the
freestream Knudsen number and Re, is the local Reynolds
number of flow in the viscous interaction region.

(16)

P. Forebody-Inlet Geometry Integration Solver

fo=— inlet ratio *
16 volume ratio

|:(180d + B+ By + By ) *:l a7

(p3e/p2i)
(Mo *Rey)

where,
lnlet ratio = M}inlet/hinlet

. L *H *W
VO[ ratio = ( axial max max ) %
inlet isolator
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The variables of right hand term in (17) are same as those
described in (1) to (4) and (8). Variables w;,,; and A, are the
maximum width (m) and height (m) of inlet while L,y
describes the total axial length of forebody-inlet assembly
along the body coordinates, H,,, and W, are the maximum
dimensions of the assembly measured along vertical and
lateral directions respectively. The variable 4;,., is area of
inlet (m®)  determined  geometrically  from the
aerothermodynamic solution while ;.. is length of isolator
(m) obtained from solution of inlet-isolator interaction solver.

0.Mass Modeling Solver
_ [(Z *Ze )/FTSTO] + %

[(Z *Z, )/rssm]

Variables Z and Ze are derived parameters for vehicle mass
ratio and empty mass ratio that help in determining the
viability TSTO/SSTO vehicle configuration. The I', Il. and
(L/D) variables represent mass ratios for SSTO and TSTO
configurations, mass fraction for empty first stage and lift-to-
drag ratio also for first stage of vehicle respectively. These are
also the optimization variables of large vehicle configuration.

/= [(¢/D),. /0] @8)

R. Aggregate Objective Function

In order to avoid any conflict arising from multiple
objective functions, an overall (aggregate) objective function
is constructed by linear combination of multiple objective
functions as shown in (12).

{5

where @ values are weightages needed to adjust AOF value to
o).

(19)

®;=0(1); 0,=0(-2); 03=0(2); 0,=0(14); w5=0(-4);
0s=0(0); 0;,=0(-1); ws=0(7) ; we=0(-3);

The optimization problem is classified as a nonlinear
programming, constrained, parametric optimization problem
of real-valued, deterministic type design variables. It has non-
separable multiple objective functions for multi-objective
optimization, which are reconfigured into a single aggregate
objective function for implementation with other evolutionary
optimization algorithms. The mathematical model is defined

by solution of design vector ( X ) as follows:-

RysR &k W 05 Boas Buas
Sind X =4 Bos; BrasRey; by

hmax ;Hel > He2 5 (l/D)slgl

that minimizes — f (X ) = maximizes g (X )

(20)
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Subject to inequality constraints defined at Table I TABLE
ithese values correspond to nominal operating range
parameters for hypersonic compression surfaces. The

aggregate objective function f ()? ) is defined as a vector of
multiple objective functions and is defined as follows:-

F(X)= {4 (X (X5 fio(X)s £ (X)) 1

where f; ()?) for i = 1 to 17 is defined by (1) to (18) while

aggregate function f ()? ) is defined by (19) and (21) from
above.

IV. TwoO-STEP SVM CLASSIFICATION APPROACH

The process of implementing SVM in mass-model
classification of TSTO surrogates cannot be complied directly
without first carrying out segregation and pre-classification of
training data obtained from the SHWAMIDOF program.
Therefore implementation of SVM in TSTO mass-model
classification is a two-step process. The first step called
segregation & pre-classification step is followed by SVM
training & classification step. Fig. 4 depicts the schematics of
SVM implementation algorithm in TSTO classification
process.

Training

1
1
1
1
1
1 matrix 1
1 MiZ Ve Mil
I_] 1
SHWAMIDOF-FI | Traknisg | 5 i I Muswpy S| S
archival data data for of training 1 Training B o
sheets Massmodel data | Mass empty 2 ST Support Vector
1| Massfucta |1 7
| 1
> 11
i .
: I Mass imitial 1 :
——————— [}
1! —
1 1| Massiminal 2 |
I et i
1
: ; { ,{ Chesficdtea |
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= W=ml o
Mass-model = of S Tt Py
| Test matrix 2:- HPp Classified test
1 : Alpha Vs MRt h}:::’:* m 'I matrix 7 |
| SVM)
HEET ¢
i test
] P
1| Mass inhiad 2 Ay
i
Fig. 4 The two-step SVM process for mass-model classification of
TSTO vehicle

A. Step 1

The training data obtained from previous SHWAMIDOF-FI
runs does not contain information about classes in which the
data can be categorized, therefore the mass-model data is first
segregated i.e. text and numerical data of all variables is
separated and numerical data is stored into smaller sub-
matrices which contain only the desired comparative data. In
this way data of unnecessary parameters can be expulsed from
classification process thereby saving both computational effort
and time while reducing the complexity of the problem. In this
research three sub-matrices are generated as follows:-

International Scholarly and Scientific Research & Innovation 8(1) 2014

1. Training matrix 1 — comparison between initial (all up)
masses of first stage as function of mass of the second
stage.

2. Training matrix 2 — comparison between initial mass ratio
(IMR or I'tsto) of the TSTO vehicle as function of energy
split coefficient (alpha or a).

3. Training matrix 3 — comparison between empty mass of
first stage as a function of fuel mass of the same stage.

After segregation the pre-classification is achieved by using

a spreadsheet solution for training data, whereby data for the

three types of training matrices (as mentioned earlier) is pre-

classified by using the following functions:-

1. Training Matrix 1:- mi,” Vs (mi /mi, — 5.0)°

A logarithmic function in higher dimensional space for pre-
classification hyperplane as defined by (22) is used. The
variables m;; and my, represent initial masses of first and
second stages of TSTO respectively. The value of 5.0 in the
relation for variable y refers to the nominal value of mass
ratios between the first and second stages obtained from the
training data.

y=2.2641In(x)—49.571

2
where y = (m% —5.0) and x =m,’
i2

2. Training Matrix 2:- (a-0.6)° Vs I'rszo

An exponential function is used to define the pre-
classification hyperplane, as shown in (23). The variable I'tgto
and o represent initial mass ratio of TSTO and hypersonic
energy partition value respectively. The value of 0.6 used in
definition of variable x refers to the nominal value of energy
split obtained for trans-atmospheric flight using HEP method.

(22)

— 9.9857 11.249x
g ‘ (23)

where y =T 5, and x =(a—0.6)°

3. Training Matrix 3:- mf}’ Vs (me,/mf)’
The pre-classification hyperplane is defined by a 3rd order
polynomial function as shown in (24). Here the variables m,;

and my represent empty and fuel masses of first stage
(booster) of TSTO vehicle.

y=8*10""x"=7*107"x* +1*10°x-0.0189
" 2 (24)
_|m, _ 2
wherey—( 'mﬂj and x=m,

The pre-classification segregates training data into two
classes called good and bad that represent suitable/acceptable
configurations and unsuitable configurations (that need to be
reworked) respectively. The pre-classified data and its groups
can now be read into the main SVM function to reclassify the
training data into groups defined from the pre-classification
process.
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B. Step 2

In the SVM training and classification step the training
matrices together with grouping vector is passed to the SVM
training function for training of data based on the pattern of
grouping solution for each of training matrices. The SVM
training function uses an optimization method to identify
support vectors s;, weight a; and bias b that are used to classify
vectors x according to (25).

c= Zal.k(si,x)+b

(25

Here £k is a kernel function and SVM training function can
classify data using linear, quadratic, polynomial, Gaussian
radial basis, and/or multilayer perceptron kernel functions.
The classification parameter ¢ will classify data of vector x as
member of the first group if ¢>0 otherwise it is classified as a
member of the second group. Once this step is complete then
new i.e. test data is generated from a fresh run of
SHWAMIDOF program and mass-model data from the
analysis module is passed to the SVM classifier function. As
with training data the test data also goes through segregation
into test matrices and is then read into the SVM classifier
function which also acquires classified training data from the
SVM training function. The classifier function correlates test
data with training data to determine the pattern and hence
predicts the possible classification of test data into the good
and bad configuration categories.

V.TIPSO-SVM EXPERT SYSTEM RESULTS

A. The TIPSO Results of Baseline Optimization

In this section the full case scenario for aecrothermodynamic
optimization of hypersonic compression system coupled with
mass-model optimization of lower-stage TSTO vehicle is
addressed for the selected baseline configuration and using the
chosen global TIPSO optimizer. The optimization variables
constitute geometric, aerothermodynamic and mass-modeling
parameters as defined in Table I. These variables also indicate
to the diversity of parameters that are required to be handled
for which the TIPSO algorithm is employed.

International Scholarly and Scientific Research & Innovation 8(1) 2014

TABLE I
LOWER AND UPPER BOUND CONSTRAINTS FOR TIPSO OPTIMIZATION
PROBLEM
. >) Lower <) Upper
Variable (_l)>ound (_]Z))Oull:’)lg
Nose radius (m) Ry 0.0010 0.0030
Lip radius (m) R, 0.0030 0.0045
Thermal emissivity & 0.90 0.97
Thermal conductivity (W/m?) kw 100 110
Efrr;ﬁ Z;atture factor laminar-to- wir 1.40 1.50
Forebody oblique shock angle (deg) Poa 9.60 11.0
1* ramp oblique shock angle (deg) Pia 22.0 24.0
2" ramp oblique shock angle (deg) P 26.0 28.0
Cowl shock angle (deg) Psa 40.0 45.0
bR:ZSS;f; number of momentum Rey 10000 15000
Pressure factor across isolator D, 1.40 1.50
Max. height of generating cone (m) Piax 10.0 12.0
Empty mass fraction of stage 1 11, 0.35 0.42
Empty mass fraction of stage 2 11, 0.19 0.22
Lift-to-drag ratio of stage 1 (L/D)gig1 4.0 5.0

The outcome of TIPSO optimization is the optimal

variables. These are compared with corresponding variables of
baseline configurations at Table II to determine the percentage
change brought about by optimization. The percent variations
show that heuristic optimization affects all parameters of
optimization some of which are increased while others are
reduced in comparison with baseline parameters. An
assessment based on baseline parameters vis-a-vis the optimal
results can be assessed rather easily by evaluating and
comparing performance, geometric and mass-modeling
parameters corresponding to the baseline and optimal
configurations.

TABLEII
COMPARATIVE RESULTS OF OPTIMIZATION VARIABLES FOR BASELINE AND
OPTIMAL CONFIGURATIONS

Variables Baseline  Optimal Variation (%)
Nose radius (m) Ry 0.0025 0.001359  -45.64
Lip radius (m) R, 0.0025 0.003628  +45.12
Thermal emissivity & 0.90 0.9309 +3.433
Thermal conductivity kw 200 109.07 -45.46
(W/m?)

Temperature factor 77%x 1.50 1.4568 -2.88
laminar-to-turbulent

Forebody oblique shock Poa 10 9.6084 -3.916
angle (deg)

1* ramp oblique shock Pia 23.11 22.28 -3.59
angle (deg)

ond ramp oblique shock Paa 27.57 26.61 -3.48
angle (deg)

Cowl shock angle (deg) Psa 43.29 41.36 -4.46
Reynolds number of Rey 8000 14483 +81.04
momentum boundary

Pressure factor across D3 1.5 1.4071 -6.19
isolator

Max. height of generating Donax 15 11.69 -22.06
cone (m)

Empty mass fraction of 11, 0.40 0.3701 -7.48
stage 1

Empty mass fraction of 1., 0.21 0.1926 -8.28
stage 2

Lift-to-drag ratio of stage 1~ (L/D)y,; 4.5 4.7487 +5.52
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Table III represents the comparative parameters for both
configurations. These results show that cognitive heuristic
framework yields an optimized configuration with higher
overall efficiency. An increase in cycle temperature and
pressure is seen as useful for combustion efficiency and
equivalent specific thrust. However temperature and pressure
gains cause increment in entropy and flow momentum losses
which are compensated by forebody blending. In the process
of configuration optimization it is envisaged that the geometry
of baseline configuration will be re-sized so as to
proportionately reduce the dimensions of the forebody-inlet
assembly while attendantly increasing inlet flow capture area
and improving the lift-to-drag and net thrust behavior of the
system. Results of Table III show that for minimal variations
in dimensions along axial and vertical direction but substantial
reduction of upto 20% in frontal area (spurred by considerable
variations along lateral direction) of the system, optimization
process yields an optimal configuration by utilizing a
waverider of 57% smaller base dimension. The inlet size gets
increased by nearly 10% while the isolator throat is widened
by four folds hence providing flow relieving effect that would
permit higher Mach number operations to be performed by the
system. The larger air inlet results in weaker sidewall and
boundary layer interaction effects and hence an improved
starting performance. Optimization results show that energy
split parameter (o) shifts in favor of lower stage of TSTO
vehicle, an improved TSTO mass configuration is achieved
with as much substantial reduction in launch weight. Under
the improved configuration both Z and Z. parameters reduce
below unity value hence the mass ratio of CAV stage holds
good for both SSTO and TSTO configurations.

TABLE III
COMPARATIVE PARAMETERS FOR BASELINE AND TIPSO OPTIMIZED
CONFIGURATION

Baseline config.

Parameters Optimal config.

Compression efficiency (1) 0.8932 0.8944
Cycle temperature ratio (‘) 4.54 4.34
Cycle pressure ratio (¢) 121.6 105.84
Cycle entropy change ratio () 0.3124 0.3016
Mass flow specific thrust (Fy) 685 m/s 719 m/s
Uninstalled thrust (Fyuins) 27KN 29KN
Specific impulse (I,) 2402s 2521s
Overall (aeroth.) efficiency (n,) 0.3634 0.3814
Hypersonic energy partition (o) 0.64 0.725
Payload mass (myay) 7000 7000
Empty mass of TSTO (m.) 48391 30880
Fuel mass TSTO (my) 55303 37712
Launch mass TSTO (myetal) 110695 75592
SSTO vs TSTO (Z/Z.) 1.15/1.08 0.97/0.88

B. Mass-Modeling Parameters

Since mass-modeling forms the basis of classification work
for the TSTO configuration, therefore it is imperative to
exclusively compile the mass-modeling parameters for the
optimized vehicle. The mass data is evaluated on the basis of
hypersonic energy partition (HEP) principle [10] and
calculated for various pseudo-orbit altitude above mean sea
level (AMSL) up to nominal low earth orbit (LEO). Selected
results are presented at Table IV below. Insofar as distribution
of vehicle masses are concerned between the first and second
stages a minimum initial mass ratio configuration is
considered to be the most feasible. Therefore the mass-model
at 6536 km altitude is selected as the optimal masses for the
TSTO stages and the optimal LEO (low earth orbit) height is
defined at 165km. It is the mass-model parameters at this
altitude that are processed through SVM for evaluating the
suitability of the evolved optimal configuration.

TABLE IV
MASS MODELING PARAMETERS OF OPTIMIZED TSTO CONFIGURATION
Orbital radius Initial mass Energy Empty mass Fuel mass stage Gross mass

(km) ratio (I 7sr0) split (o) Stage 1 (m.;)  Stage 2 (m.) Stage 1 (my;) Stage 2 (my) Stage 2 (m;2) vehicle (mg)
6486 12.962 0.509 33582.7 5332.9 29459.2 15360.4 27693.3 90735.2
6496 12.127 0.552 31418.8 4619 29483.5 12367.2 23986.2 84888.5
6506 11.538 0.596 29892.1 4054.2 29818.3 9999 21053.2 80763.6
6516 11.139 0.639 28859.5 3596.6 30437.2 8080.4 18677 77973.7
6526 10.899 0.682 28236.6 3218.8 31339.3 6496.2 16715 76290.9
6536 10.799 0.725 27978 2901.9 32544.8 5167.4 15069.3 75592.1
6546 10.799 0.725 28043.5 2901.9 32656.2 5167.4 15069.3 75769
6556 10.799 0.725 28109 2901.9 32767.8 5167.4 15069.3 75946.1
6566 10.799 0.725 28174.6 2901.9 32879.4 5167.4 15069.3 76123.3

C.SVM Based Expert System Results

Hereinafter the optimized configuration is designated as
FIC-2113MEO. The pre-classified data and its groups are read
into the SVM which employs (25) to reclassify the training
data into groups defined from the pre-classification process. In
the training process of SVM data a linear kernel function is
employed to map the training data of the three matrices into
kernel space. The separating hyperplane for training data is
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found by using sequential minimal optimization (SMO)
method. Results obtained for the classification of FIC-
2113MEO configuration matrices are presented in Figs. 5~7
below. Results of Fig. 5 depict that test data of mass-model
obtained from FIC-2113MEO is classified into the good
category. This implies that for a certain value of initial mass of
lower-stage of TSTO the mass ratio between lower and upper
stages will be a minimal value hence providing for a lighter
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TSTO configuration at launch. In Fig. 6 test data of mass-
model obtained from FIC-2113MEO is also classified into the
good category. This shows that the variation in energy split
ratio of test data and nominal results has a minimizing
tendency and that the subject energy split results in a vehicle
which attendantly has minimizing tendency in initial mass
ratio. This in general implies that FIC-2113MEO has an
optimal divisioning of thrust required to be delivered by the
first and second stages along with minimization of overall
vehicle mass per kilogram of payload being carried into orbit.
Results at Fig. 7 also depict that FIC-2113MEO has a good
configuration insofar as mass-model is concerned. In the
correlation of empty mass of lower-stage with of fuel mass
also of the same stage, it is seen that the test configuration
produces lower values of square of mass ratio (m.;/mg) as
function of change in the square of fuel mass of first stage of
TSTO. This implies that for any amount of liquid hydrogen
fuel added in the first stage of TSTO spaceplane the
corresponding total stage-weight of optimized configuration
will remain minimal.
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Fig. 5 Two-step SVM classification results of FIC-2113MEO
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Fig. 6 Two-step SVM classification results of FIC-2113MEO
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Fig. 7 Two-step SVM classification results of FIC-2113MEO

Classification results of optimized configuration FIC-
2113MEO for each of the test matrices are summarized at
Table V below.

TABLEV
CLASSIFICATION RESULTS OF TWO-STEP SVM METHOD FOR FIC-2113MEO

Property Matrices Classification
Initial masses of stages Type 1 (22) ‘good’
Mass ratios and energy split Type 2 (23) ‘good’
Fuel and empty masses Type 3 (24) ‘good’

The results obtained through classification of mass-
modeling data, using artificially intelligent solution based on
SVM method, vindicate the efficacy of optimized solution
produced by SHWAMIDOF-FI program. In that the test
configuration FIC-2113MEO has the lightest possible mass-
model as may be necessary to evolve a good configuration for
a TSTO spaceplane to LEO destinations. Since the above
configuration has been evaluated as suitable for TSTO
application therefore vehicle sizing is undertaken. This is
accomplished using HASA sizing methodology for TSTO
spaceplanes and results at Table VI show that the TIPSO
optimized and SVM classified configuration shows
remarkable improvement in vehicle sizing characteristics.
These results imply that TIPSO-SVM hybridized methodology
in effect leads to substantial improvement in aerospace vehicle
sizing and is attendantly able to classify the surrogates
correctly thereby leading to selection of surrogates that show
improved parameters only.

TABLE VI
BASELINE AND EVOLVED SIZING PARAMETERS OF TSTO BOOSTER
Parameters Baseline  Optimized
Total volume (m?) 1352.01  896.05
Empty volume (m®)  691.05  436.65
Fuel volume (m®) 661.0 459.4
Total wetted area m®) ~ 1106.13  939.5

VI. CONCLUSION

A hybridized inverse design methodology that incorporates
TIPSO optimization and SVM classification is proposed as
part of an expert system to optimize and classify surrogates of
TSTO vehicles. The methodology is unique in that it does not
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rely on archival design data and instead a fast and frugal
approach accumulates high-fidelity optimal solution data
necessary for training of computational machine. A two-step
SVM algorithm segregates text and numerical data from
optimized solution and classifies the results of all newly
generated optimization solution of TSTO surrogates.
Classification results have been consistent with physical
parameters of surrogates and the methodology is deemed to be
of extensive utility as an expert system that relies on self-
generated training data and is independent of archival
information from other aerospace systems.
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