The Estimation of Human Vital Signs Complexity
Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius
Abstract:
Nonstationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based on the interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore, we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables’ interactions.
Keywords: Cardiac diseases, Complex systems theory, ECG analysis, matrix analysis.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090442
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245References:
[1] V.Sharma. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier. Open Cardiovasc Med J. 2009; 3: pp. 110–123.
[2] M. Potse. Mathematical modeling and simulation of ventricular activation sequences: implications for cardiac resynchronization therapy. J Cardiovasc Transl Res 5:pp. 146-158.
[3] J.E. Skinner, J.J. Zebrowski, Z.J. Kowalik. New algorithms for analysis of heart rate variability: low-dimensional chaos predicts lethal arrhythmias. In: Kantz H, Kurths J, Mayer-Kress G, editors. Nonlinear Analysis of Physiological Data. Springer–Verlag; Berlin, Heidelberg, New York: 1998. pp. 129–166
[4] P.Kohl., E.J.Crampin, T.A. Quinn, D.Noble. Systems Biology: An Approach. Clinical pharmacology & Therapeutics, 2010. – No 88 (1). pp. 25-33.
[5] A.L .Goldberger, L.A. Amaral, J.M.Hausdorff, P.Ivanov, C.K. Peng. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99 Suppl 1: 2002, pp. 2466–2472.
[6] G. Sakalyte; A. Kavoliuniene, A.Vainoras; R. Jurkevicius. Hypotensive effects of telmisartan on blood pressure during rest and exercise in patients with mild and moderate arterial hypertension., Medicina, Kaunas, Lithuania. 2002; 38(9):pp.901-910.
[7] L. Bikulčienė., Z.Navickas., A.Vainoras., J.Poderys, R.Ruseckas. Matrix Analysis of Human Physiologic Data. Proceedings of International Conference on Information Technology Interfaces. - University of Zagreb, 2009 .pp. 41-46.
[8] O.Stiedl, M.Meyer. Fractal dynamics in circadian cardiac time series of corticotropin-releasing factor receptor subtype-2 deficient mice. J Math Biol. 2003;47(2):pp.169–197.
[9] Y. Bar-Yam, Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering, in Complex Engineered Systems, D. Braha, A. Minai, Y. Bar-Yam (Eds.), Springer, Berlin, 2006..
[10] A. Vainoras, L. Gargasas, R. Jurkonienė V. Jurkonis, G. Jaruševičius, K. Berškienė, Z. Navickas. Analysis of ElectricCardiac Signals – Methods and Application Results. Electronics and Electrical Engineering. Kaunas: Technologija, 2008. –No. 5(85). pp. 81–84.
[11] K. Berskiene, A. Lukosevicius., G.Jarusevicius., V.Jurkonis., Z.Navickas, A. Vainoras, A. Daunoraviciene. Analysis of Dynamical Interrelation of Electrocardiogram Parameters. Electronics and Electrical Engineering. Kaunas: Technologija, 2009. – No. 7(95). – pp. 95-98.
[12] Y.Bar-Yam, When Systems Engineering Fails. Toward Complex Systems Engineering in International Conference on Systems, Man & Cybernetics 2003 Vol. 2 .IEEE Press, Piscataway, NJ, 2003., pp. 2021- 2028
[13] J. Durbin, S. J. Koopman. Time Series Analysis by State Space Methods. Oxford University Press, 2001 06. 21 - 253 p.
[14] E.Venskaityte, J.Poderys, N. Balagué, L.Bikulciene. Assessment of Dynamics of Inter-Parameter Concatanation Exercise Tests // Electronics and Electrical Engineering.- Kaunas : Technologija, 2009. – No. 6(94). pp. 89-92
[15] R.Smidtaite, Z.Navickas, A.Vainoras, L.Bikulciene, V.Poskaitis. Evalutation of Coherence of T-Wave in Different Leads. Electronics and Electrical Engineering. Kaunas: Technologija, 2009. No. 5(93).pp. 113-116.
[16] A. Voss, S. Schulz, R. Schroeder, M. Baumert, P. Caminal. Methods derived from nonlinear dynamics for analysing heart rate variability. Trans. R. Soc. A 28 January 2009 vol. 367no. 1887 , pp. 277-296.
[17] R.M. Millis, R. E. Austin, M. D. Hatcher, V. Bond, K. L. Goring. Metabolic Energy Correlates of Heart Rate Variability Spectral Power Associated with a 900-Calorie Challenge. J Nutr Metab. 2011; 2011: 7153612011 June 20
[18] P. De Becker, N. McGregor, K. De Meirleir. A definition-based analysis of symptoms in a large cohort of patients with chronic fatigue syndrome. J Intern Med. 2001 Sep;250(3), pp.234-40.
[19] J. J. Batzel, M. Bachar. Modeling the cardiovascular-respiratory control system: data, model analysis, and parameter estimation. 2010, Acta Biotheoretica, 58(4): pp. 369 – 380,
[20] A.Arnold, M. Milner, H. Witte, R. Bauer; C. Braun. Adaptive AR modeling of nonstationary time series by means of Kalman filtering. Biomedical Engineering, IEEE Transactions. Vol:45, Issue: 5, May 1998, pp.553-562.
[21] A. Leonaite, A. Vainoras. Heart Rate Variability during two Relaxation Techniques in Post-MI Men. Electronics and Electrical Engineering. Kaunas: Technologija, 2010. No. 5(101). pp. 107–110.
[22] . R.E. Kleiger, J.P. Miller, J.T. Bigger, A.J. Moss: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987, 59: pp.256-262.
[23] A. E. Aubert, B. Verheyden, F. Beckers, J. Tack, J. Vandenberghe. Cardiac autonomic regulation under hypnosis assessed by heart rate variability: spectral analysis and fractal complexity. Neuropsychobiology. 2009;60(2):104-12. doi: 10.1159/000239686. Epub 2009 Sep 21.
[24] G. Jaruševičius, R. Navickas, A. Vainoras, L. Gargasas, E. Vaicekavičius. JT interval changes in acute myocardial infarction following coronary angioplasty. Medicina. 2004; Vol. 40 (1). p. 90-93