Search results for: and processing time.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7642

Search results for: and processing time.

6292 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: G. Bumanis, D. Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: Alkaline material, buffer capacity, biogas production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
6291 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
6290 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry

Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine

Abstract:

The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).

Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
6289 Watermark-based Counter for Restricting Digital Audio Consumption

Authors: Mikko Löytynoja, Nedeljko Cvejic, Tapio Seppänen

Abstract:

In this paper we introduce three watermarking methods that can be used to count the number of times that a user has played some content. The proposed methods are tested with audio content in our experimental system using the most common signal processing attacks. The test results show that the watermarking methods used enable the watermark to be extracted under the most common attacks with a low bit error rate.

Keywords: Digital rights management, restricted usage, content protection, spread spectrum, audio watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
6288 Data Hiding in Images in Discrete Wavelet Domain Using PMM

Authors: Souvik Bhattacharyya, Gautam Sanyal

Abstract:

Over last two decades, due to hostilities of environment over the internet the concerns about confidentiality of information have increased at phenomenal rate. Therefore to safeguard the information from attacks, number of data/information hiding methods have evolved mostly in spatial and transformation domain.In spatial domain data hiding techniques,the information is embedded directly on the image plane itself. In transform domain data hiding techniques the image is first changed from spatial domain to some other domain and then the secret information is embedded so that the secret information remains more secure from any attack. Information hiding algorithms in time domain or spatial domain have high capacity and relatively lower robustness. In contrast, the algorithms in transform domain, such as DCT, DWT have certain robustness against some multimedia processing.In this work the authors propose a novel steganographic method for hiding information in the transform domain of the gray scale image.The proposed approach works by converting the gray level image in transform domain using discrete integer wavelet technique through lifting scheme.This approach performs a 2-D lifting wavelet decomposition through Haar lifted wavelet of the cover image and computes the approximation coefficients matrix CA and detail coefficients matrices CH, CV, and CD.Next step is to apply the PMM technique in those coefficients to form the stego image. The aim of this paper is to propose a high-capacity image steganography technique that uses pixel mapping method in integer wavelet domain with acceptable levels of imperceptibility and distortion in the cover image and high level of overall security. This solution is independent of the nature of the data to be hidden and produces a stego image with minimum degradation.

Keywords: Cover Image, Pixel Mapping Method (PMM), StegoImage, Integer Wavelet Tranform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
6287 Kalman Filter Gain Elimination in Linear Estimation

Authors: Nicholas D. Assimakis

Abstract:

In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.

Keywords: Discrete time, linear estimation, Kalman filter, Kalman filter gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
6286 Performance Analysis of the Subgroup Method for Collective I/O

Authors: Kwangho Cha, Hyeyoung Cho, Sungho Kim

Abstract:

As many scientific applications require large data processing, the importance of parallel I/O has been increasingly recognized. Collective I/O is one of the considerable features of parallel I/O and enables application programmers to easily handle their large data volume. In this paper we measured and analyzed the performance of original collective I/O and the subgroup method, the way of using collective I/O of MPI effectively. From the experimental results, we found that the subgroup method showed good performance with small data size.

Keywords: Collective I/O, MPI, parallel file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
6285 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
6284 A Virtual Electrode through Summation of Time Offset Pulses

Authors: Isaac Cassar, Trevor Davis, Yi-Kai Lo, Wentai Liu

Abstract:

Retinal prostheses have been successful in eliciting visual responses in implanted subjects. As these prostheses progress, one of their major limitations is the need for increased resolution. As an alternative to increasing the number of electrodes, virtual electrodes may be used to increase the effective resolution of current electrode arrays. This paper presents a virtual electrode technique based upon time-offsets between stimuli. Two adjacent electrodes are stimulated with identical pulses with too short of pulse widths to activate a neuron, but one has a time offset of one pulse width. A virtual electrode of twice the pulse width was then shown to appear in the center, with a total width capable of activating a neuron. This can be used in retinal implants by stimulating electrodes with pulse widths short enough to not elicit responses in neurons, but with their combined pulse width adequate to activate a neuron in between them.

Keywords: Electrical stimulation, Neuroprosthesis, Retinal implant, Retinal Prosthesis, Virtual electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
6283 Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus

Authors: P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K

Abstract:

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Keywords: Autonomic nervous system, diabetes mellitus, frequency domain and time domain analysis, heart rate variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3121
6282 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History

Authors: Rama Debbarma, Debanjan Das

Abstract:

The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.

Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, time history.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
6281 Conformal Invariance in F (R, T) Gravity

Authors: Pyotr Tsyba, Olga Razina, Ertan Güdekli, Ratbay Myrzakulov

Abstract:

In this paper we consider the equation of motion for the F (R, T) gravity on their property of conformal invariance. It is shown that in the general case, such a theory is not conformal invariant. Studied special cases for the functions v and u in which can appear properties of the theory. Also we consider cosmological aspects F (R, T) theory of gravity, having considered particular case F (R, T) = μR+νT^2. Showed that in this case there is a nonlinear dependence of the parameter equation of state from time to time, which affects its evolution.

Keywords: Conformally invariance, F (R, T) gravity, metric FRW, equation of motion, dark energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
6280 Bifurcation Analysis in a Two-neuron System with Different Time Delays

Authors: Changjin Xu

Abstract:

In this paper, we consider a two-neuron system with time-delayed connections between neurons. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation results are given to support the theoretical predictions. Finally, main conclusions are given.

Keywords: Two-neuron system, delay, stability, Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
6279 Impact of Electronic Word-of-Mouth to Consumer Adoption Process in the Online Discussion Forum: A Simulation Study

Authors: Aussadavut Dumrongsiri

Abstract:

Web-based technologies have created numerous opportunities for electronic word-of-mouth (eWOM) communication. There are many factors that affect customer adoption and decisionmaking process. However, only a few researches focus on some factors such as the membership time of forum and propensity to trust. Using a discrete-time event simulation to simulate a diffusion model along with a consumer decision model, the study shows the effect of each factor on adoption of opinions on on-line discussion forum. The purpose of this study is to examine the effect of factor affecting information adoption and decision making process. The model is constructed to test quantitative aspects of each factor. The simulation study shows the membership time and the propensity to trust has an effect on information adoption and purchasing decision. The result of simulation shows that the longer the membership time in the communities and the higher propensity to trust could lead to the higher demand rates because consumers find it easier and faster to trust the person in the community and then adopt the eWOM. Other implications for both researchers and practitioners are provided.

Keywords: word of mouth, simulation, consumer behavior, ebusiness, marketing, diffusion process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203
6278 Cloud Computing: Changing Cogitation about Computing

Authors: Mehrdad Mahdavi Boroujerdi, Soheil Nazem

Abstract:

Cloud Computing is a new technology that helps us to use the Cloud for compliance our computation needs. Cloud refers to a scalable network of computers that work together like Internet. An important element in Cloud Computing is that we shift processing, managing, storing and implementing our data from, locality into the Cloud; So it helps us to improve the efficiency. Because of it is new technology, it has both advantages and disadvantages that are scrutinized in this article. Then some vanguards of this technology are studied. Afterwards we find out that Cloud Computing will have important roles in our tomorrow life!

Keywords: Cloud Computing, Grid Computing, Internet as a Platform, On-demand Computing, Software as a Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
6277 Real-time Haptic Modeling and Simulation for Prosthetic Insertion

Authors: Catherine A. Todd, Fazel Naghdy

Abstract:

In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed.

Keywords: Haptic modeling, medical device insertion, real-time visualization of prosthetic implantation, surgical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
6276 Sampling of Variables in Discrete-Event Simulation using the Example of Inventory Evolutions in Job-Shop-Systems Based on Deterministic and Non-Deterministic Data

Authors: Bernd Scholz-Reiter, Christian Toonen, Jan Topi Tervo, Dennis Lappe

Abstract:

Time series analysis often requires data that represents the evolution of an observed variable in equidistant time steps. In order to collect this data sampling is applied. While continuous signals may be sampled, analyzed and reconstructed applying Shannon-s sampling theorem, time-discrete signals have to be dealt with differently. In this article we consider the discrete-event simulation (DES) of job-shop-systems and study the effects of different sampling rates on data quality regarding completeness and accuracy of reconstructed inventory evolutions. At this we discuss deterministic as well as non-deterministic behavior of system variables. Error curves are deployed to illustrate and discuss the sampling rate-s impact and to derive recommendations for its wellfounded choice.

Keywords: discrete-event simulation, job-shop-system, sampling rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
6275 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
6274 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series

Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser

Abstract:

In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.

Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
6273 Model of Continuous Cheese Whey Fermentation by Candida Pseudotropicalis

Authors: Rudy Agustriyanto, Akbarningrum Fatmawati

Abstract:

The utilization of cheese whey as a fermentation substrate to produce bio-ethanol is an effort to supply bio-ethanol demand as a renewable energy. Like other process systems, modeling is also required for fermentation process design, optimization and plant operation. This research aims to study the fermentation process of cheese whey by applying mathematics and fundamental concept in chemical engineering, and to investigate the characteristic of the cheese whey fermentation process. Steady state simulation results for inlet substrate concentration of 50, 100 and 150 g/l, and various values of hydraulic retention time, showed that the ethanol productivity maximum values were 0.1091, 0.3163 and 0.5639 g/l.h respectively. Those values were achieved at hydraulic retention time of 20 hours, which was the minimum value used in this modeling. This showed that operating reactor at low hydraulic retention time was favorable. Model of bio-ethanol production from cheese whey will enhance the understanding of what really happen in the fermentation process.

Keywords: Cheese whey, ethanol, fermentation, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
6272 Improving Air Temperature Prediction with Artificial Neural Networks

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.

Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
6271 The Use of Information Technologies in Special Education for Preparation of Individual Education Programs

Authors: Yasar Guneri Sahin, Mehmet Cudi Okur

Abstract:

In this presentation, we discuss the use of information technologies in the area of special education for teaching individuals with learning disabilities. Application software which was developed for this purpose is used to demonstrate the applicability of a database integrated information processing system to alleviate the burden of educators. The software allows the preparation of individualized education programs based on the predefined objectives, goals and behaviors.

Keywords: Special education, disabled individual, informationtechnology, individual education programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
6270 Combining Mobile Intelligence with Formation Mechanism for Group Commerce

Authors: Lien Fa Lin, Yung Ming Li, Hsin Chen Hsieh

Abstract:

The rise of smartphones brings new concept So-Lo-Mo (social-local-mobile) in mobile commerce area in recent years. However, current So-Lo-Mo services only focus on individual users but not a group of users, and the development of group commerce is not enough to satisfy the demand of real-time group buying and less to think about the social relationship between customers. In this research, we integrate mobile intelligence with group commerce and consider customers' preference, real-time context, and social influence as components in the mechanism. With the support of this mechanism, customers are able to gather near customers with the same potential purchase willingness through mobile devices when he/she wants to purchase products or services to have a real-time group-buying. By matching the demand and supply of mobile group-buying market, this research improves the business value of mobile commerce and group commerce further.

Keywords: Group formation, group commerce, mobile commerce, So-Lo-Mo, social influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
6269 SPA-VNDN: Enhanced Smart Parking Application by Vehicular Named Data Networking

Authors: Bassma Aldahlan, Zongming Fei

Abstract:

Recently, there is a great interest in smart parking application. Theses applications are enhanced by a vehicular ad-hoc network, which helps drivers find and reserve satiable packing spaces for a period of time ahead of time. Named Data Networking (NDN) is a future Internet architecture that benefits vehicular ad-hoc networks because of its clean-slate design and pure communication model. In this paper, we proposed an NDN-based frame-work for smart parking that involved a fog computing architecture. The proposed application had two main directions: First, we allowed drivers to query the number of parking spaces in a particular parking lot. Second, we introduced a technique that enabled drivers to make intelligent reservations before their arrival time. We also introduced a “push-based” model supporting the NDN-based framework for smart parking applications. To evaluate the proposed solution’s performance, we analyzed the function for finding parking lots with available parking spaces and the function for reserving a parking space. Our system showed high performance results in terms of response time and push overhead. The proposed reservation application performed better than the baseline approach.

Keywords: Cloud Computing, Vehicular Named Data Networking, Smart Parking Applications, Fog Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
6268 A Real Time Collision Avoidance Algorithm for Mobile Robot based on Elastic Force

Authors: Kyung Hyun, Choi, Minh Ngoc, Nong, M. Asif Ali, Rehmani

Abstract:

This present paper proposes the modified Elastic Strip method for mobile robot to avoid obstacles with a real time system in an uncertain environment. The method deals with the problem of robot in driving from an initial position to a target position based on elastic force and potential field force. To avoid the obstacles, the robot has to modify the trajectory based on signal received from the sensor system in the sampling times. It was evident that with the combination of Modification Elastic strip and Pseudomedian filter to process the nonlinear data from sensor uncertainties in the data received from the sensor system can be reduced. The simulations and experiments of these methods were carried out.

Keywords: Collision avoidance, Avoidance obstacle, Elastic Strip, Real time collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
6267 RTCoord: A Methodology to Design WSAN Applications

Authors: J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio

Abstract:

Wireless Sensor and Actor Networks (WSANs) constitute an emerging and pervasive technology that is attracting increasing interest in the research community for a wide range of applications. WSANs have two important requirements: coordination interactions and real-time communication to perform correct and timely actions. This paper introduces a methodology to facilitate the task of the application programmer focusing on the coordination and real-time requirements of WSANs. The methodology proposed in this model uses a real-time component model, UM-RTCOM, which will help us to achieve the design and implementation of applications in WSAN by using the component oriented paradigm. This will help us to develop software components which offer some very interesting features, such as reusability and adaptability which are very suitable for WSANs as they are very dynamic environments with rapidly changing conditions. In addition, a high-level coordination model based on tuple channels (TC-WSAN) is integrated into the methodology by providing a component-based specification of this model in UM-RTCOM; this will allow us to satisfy both sensor-actor and actor-actor coordination requirements in WSANs. Finally, we present in this paper the design and implementation of an application which will help us to show how the methodology can be easily used in order to achieve the development of WSANs applications.

Keywords: Sensor networks, real time and embedded systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
6266 Bifurcation Analysis of a Plankton Model with Discrete Delay

Authors: Anuj Kumar Sharma, Amit Sharma, Kulbhushan Agnihotri

Abstract:

In this paper, a delayed plankton-nutrient interaction model consisting of phytoplankton, zooplankton and dissolved nutrient is considered. It is assumed that some species of phytoplankton releases toxin (known as toxin producing phytoplankton (TPP)) which is harmful for zooplankton growth and this toxin releasing process follows a discrete time variation. Using delay as bifurcation parameter, the stability of interior equilibrium point is investigated and it is shown that time delay can destabilize the otherwise stable non-zero equilibrium state by inducing Hopf-bifurcation when it crosses a certain threshold value. Explicit results are derived for stability and direction of the bifurcating periodic solution by using normal form theory and center manifold arguments. Finally, outcomes of the system are validated through numerical simulations.

Keywords: Plankton, Time delay, Hopf-bifurcation, Normal form theory, Center manifold theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
6265 Biodegradation Behavior of Cellulose Acetate with DS 2.5 in Simulated Soil

Authors: Roberta Ranielle M. de Freitas, Vagner R. Botaro

Abstract:

The relationship between biodegradation and mechanical behavior is fundamental for studies of the application of cellulose acetate films as a possible material for biodegradable packaging. In this work, the biodegradation of cellulose acetate (CA) with DS 2.5 was analyzed in simulated soil. CA films were prepared by casting and buried in the simulated soil. Samples were taken monthly and analyzed, the total time of biodegradation was 6 months. To characterize the biodegradable CA, the DMA technique was employed. The main result showed that the time of exposure to the simulated soil affects the mechanical properties of the films and the values of crystallinity. By DMA analysis, it was possible to conclude that as the CA is biodegraded, its mechanical properties were altered, for example, storage modulus has increased with biodegradation and the modulus of loss has decreased. Analyzes of DSC, XRD, and FTIR were also carried out to characterize the biodegradation of CA, which corroborated with the results of DMA. The observation of the carbonyl band by FTIR and crystalline indices obtained by XRD were important to evaluate the degradation of CA during the exposure time.

Keywords: Biodegradation, cellulose acetate, DMA, simulated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
6264 Deposition of Transparent IGZO Conducting Thin Films by Co-Sputtering of Zn2Ga2O3 and In2O3 Targets at Room Temperature

Authors: Yu-Hsin Chen, Yuan-Tai Hsieh, Cheng-Shong Hong, Chia-Ching Wu, Cheng-Fu Yang, Yu-Jhen Liou

Abstract:

In this study, we investigated (In,Ga,Zn)Ox (IGZO) thin films and examined their characteristics of using Ga2O3-2 ZnO (GZO) co-sputtered In2O3 prepared by dual target radio frequency magnetron sputtering at room temperature in a pure Ar atmosphere. RF powers of 80 W and 70 W were used for GZO and pure In2O3, room temperature (RT) was used as deposition temperature, and the deposition time was changed from 15 min to 60 min. Structural, surface, electrical, and optical properties of IGZO thin films were investigated as a function of deposition time. Furthermore, the GZO co-sputtered In2O3 thin films showed a very smooth and featureless surface and an amorphous structure regardless of the deposition time due to the room temperature sputtering process. We would show that the co-sputtered IGZO thin films exhibited transparent electrode properties with high transmittance ratio and low resistivity.

Keywords: IGZO, co-sputter, Ga2O3-2 ZnO, In2O3.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272
6263 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: Subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839