Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance
Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang
Abstract:
In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.
Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1124718
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293References:
[1] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. NJ: Prentice-Hall, 1989.
[2] J. L. Chang, “Applying discrete-time proportional integral observers for state and disturbance estimations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 814-818, May 2006.
[3] Z. Gao, T. Breikin, and H. Wang, “Discrete-time proportional-integral observer and observer-based controller for systems with unknown disturbances,” European Control Conference, 2007.
[4] F. Ebrahimzadeh, J. S. H. Tsai, M. C. Chung, Y. T. Liao, S. M. Guo, Shieh, L. S, and L. Wang, “A novel generalized optimal linear quadratic tracker with universal applications - Part 2: Discrete-time systems,” International Journal of Systems Science, accepted for publication.
[5] F. Ebrahimzadeh, J. S. H. Tsai, Y. T. Liao, M. C. Chung, S. M. Guo, L. S. Shieh, and L. Wang, “A novel generalized optimal linear quadratic tracker with universal applications - Part 1: Continuous-time systems,” International Journal of Systems Science, accepted for publication.
[6] F. L. Lewis and V. L. Syrmos, Optimal Control. NJ: John Wiley and Sons, Inc., 1995.
[7] K. Ogata, Discrete-time Control Systems. NJ: Prentice-Hall, Englewood Cliffs, 1987.
[8] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. NY: John Wiley and Sons, Inc., 2005.