
 

 

  
Abstract—In this study, we investigated (In,Ga,Zn)Ox (IGZO) 

thin films and examined their characteristics of using Ga2O3-2 ZnO 
(GZO) co-sputtered In2O3 prepared by dual target radio frequency 
magnetron sputtering at room temperature in a pure Ar atmosphere. 
RF powers of 80 W and 70 W were used for GZO and pure In2O3, 
room temperature (RT) was used as deposition temperature, and the 
deposition time was changed from 15 min to 60 min. Structural, 
surface, electrical, and optical properties of IGZO thin films were 
investigated as a function of deposition time. Furthermore, the GZO 
co-sputtered In2O3 thin films showed a very smooth and featureless 
surface and an amorphous structure regardless of the deposition time 
due to the room temperature sputtering process. We would show that 
the co-sputtered IGZO thin films exhibited transparent electrode 
properties with high transmittance ratio and low resistivity. 
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I. INTRODUCTION 
NDIUM gallium zinc oxide is a semiconducting material, 
consisting of indium (In), gallium (Ga), zinc (Zn) and oxygen 

(O), and often abbreviated as “IGZO”. Transparent field-effect 
transistors were developed by Professor Hideo Hosono's group 
at Tokyo Institute of Technology and Japan Science and 
Technology Agency (JST) in 2003 (crystalline IGZO-TFT) [1]. 
They used a single-crystalline thin-film transparent oxide 
semiconductor, InGaO3(ZnO)5, as an electron channel and 
amorphous hafnium oxide as a gate insulator. In 2004, they 
proposed to a novel transparent amorphous oxide 
semiconductor by using the In-Ga-Zn-O system (α-IGZO) as 
the active channel in transparent thin-film transistors (TTFTs) 
[2]. The α-IGZO was deposited on polyethylene terephthalate 
at room temperature and exhibited Hall Effect mobility 
exceeding 10 cm2V-1s-1, which is an order of magnitude larger 

 
Yu-Hsin Chen  and Yu-Jhen Lio are with the Department of Chemical and 

Materials Engineering, National University of Kaohsiung, Taiwan, Kaohsiung, 
81148, R.O.C. (e-mail: j1040404@gmail.com, sonic7838@hotmail.com).  

Cheng-Fu Yang is with the Department of Chemical and Materials 
Engineering, National University of Kaohsiung, Taiwan, Kaohsiung, 81148, 
R.O.C. (corresponding author to provide phone: 886-7-5919283; fax: 
886-7-5919277; e-mail: cfyang@nuk.edu.tw) 

Yuan-Tai Hsieh is with the Department of Electronic Engineering, Southern 
Taiwan University, Tainan, Taiwan, 71005, R.O.C. (e-mail: 
ythsieh@mail.stust.edu.tw). 

Cheng-Shong Hong is with the Department of Electronic Engineering 
National Kaohsiung Normal University, Kaohsiung, 82444, Taiwan, R.O.C. 
(e-mail: cshong@nknu.edu.tw). 

Chia-Ching Wu is with the Department of Electronic Engineering, Kao 
Yuan University, Kaohsiung 82151, Taiwan, R.O.C. (e-mail: 
9113718@gmail.com). 

than for hydrogenated amorphous silicon. 
Today, conventional active-matrix (AM) flat panel displays 

(FPDs) are based on amorphous or polycrystalline silicon 
thin-film transistor (TFT) technology. Limitations of 
amorphous silicon include visible light sensitivity and low 
field-effect mobility, which reduce the pixel aperture ratio and 
driving ability for some applications. Although polycrystalline 
silicon TFTs have larger field-effect mobility, their uniformity 
over large area might not acceptable for high yield 
manufacturing. Conventional metal oxide semiconductors such 
as zinc oxide (ZnO) are polycrystalline in nature, even at room 
temperature. The grain boundaries of such metal oxides could 
affect device properties, uniformity and stability over large 
areas. To overcome this issue, the IGZO thin films have been 
proposed for use as the channel layer in TFTs [2]. A protective 
layer is required in the IGZO TFTs with the inverse staggered 
type bottom-gate structure because the back channel of the 
IGZO active layer is damaged during the deposition and 
etching processes of the source/drain electrode. In the past, Cho 
et al. reported the effects of annealing and passivation on the 
electrical characteristics of transparent bottom-gate IGZO 
TFTs [3]. Among various oxide semiconductors, amorphous 
InGa(ZnO)m film has been extensively investigated as a 
channel layer for transparent TFTs due to its high mobility, 
transparency and simple fabrication process using sputtering 
techniques [1]-[5]. However, Jeong and Kim used the 
co-sputtering of Ga:In2O3 and Zn:In2O3 targets to deposit the 
Ga and Zn co-doped In2O3 electrode at room temperature [6]. 
In this study, we also used co-sputtering of Zn2Ga2O3 and In2O3 
targets to deposit the IGZO electrode at room temperature. This 
study examined the structural, surface, optical, and electrical 
properties of the IGZO electrodes on a glass substrate as a 
function of deposition time at a constant working pressure of 
3×10−3 torr, and a pure Ar flow rate of 50 sccm using a dual 
target sputtering system at room temperature.  

II. EXPERIMENTAL 
Ga2O3 powder (99.99%) was mixed with ZnO powder 

(99.99%) to form the Ga2O3-2 ZnO composition (abbreviated 
as GZO). After being dried and ground, the GZO powder was 
calcined at 800oC for 1 h, then ground again. GZO powder and 
pure In2O3 powder were mixed with polyvinylalcohol (PVA) as 
binder. The mixed powders were uniaxially pressed into pellets 
of 5 mm thickness and 54 mm diameter using a steel die. After 
debindering, the GZO and pure In2O3 pellets were sintered at 
various 1200oC and 1250oC, respectively, for 2 h. Glass 
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carrier concentration increased from 1.91×1020 cm–3 to 6.56 
×1021 cm–3, respectively. The resistivity of the TCO thin films 
is proportional to the reciprocal of the product of carrier 
concentration N and mobility μ: 

 
ρ = 1 / Neμ                                           (1) 

 
Both the carrier concentration and the carrier mobility 

contribute to the conductivity. As deposition time was changed 
from 15 min to 60 min, the resistivity of the IGZO thin films 
changed from 9.62×10–3 Ω-cm to 1.74 ×10–3 Ω-cm. The 
minimum resistivity of the IGZO thin films at a deposition time 
of 30 min is mainly caused by the carrier concentration at its 
maximum. 

 

 
Fig. 5 Hall mobility, carrier concentration, and resistivity of the IGZO 

thin films as a function of deposition time. 

IV. CONCLUSION 
This study examined the characteristics of IGZO thin films 

prepared by Ga2O3-2 ZnO (GZO) co-sputtered In2O3 as an 
alternative method to investigate the characteristics of the 
IGZO thin films. Thickness of the co-sputtered IGZO thin films 
was around 108nm, 275 nm, 460 nm, and 532 nm, as the 
deposition time was 15 min, 30 min, 45 min, and 60 min. As 
deposition time was 15 min, 30 min, and 45 min, the average 
transmittance ratio of the IGZO thin films in the range of 400 
nm~700 nm was 86.3%, 87.4%, and 85.9%, and the high 
average transmittance ratio of over 86.1%, 92.6%, 92.6%, and 
85.4% in the near-infrared region (700 nm ~ 1000 nm), 
respectively. As the deposition time was changed from 15 min 
to 60 min, the carrier mobility increased from 15.2 cm2/V-s to 
27.4 cm2/V-s, which are higher than those of the most reported 
IGZO thin films. 
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