WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10353,
	  title     = {Improving Air Temperature Prediction with Artificial Neural Networks},
	  author    = {Brian A. Smith and  Ronald W. McClendon and  Gerrit Hoogenboom},
	  country	= {},
	  institution	= {},
	  abstract     = {The mitigation of crop loss due to damaging freezes
requires accurate air temperature prediction models. Previous work
established that the Ward-style artificial neural network (ANN) is a
suitable tool for developing such models. The current research
focused on developing ANN models with reduced average prediction
error by increasing the number of distinct observations used in
training, adding additional input terms that describe the date of an
observation, increasing the duration of prior weather data included in
each observation, and reexamining the number of hidden nodes used
in the network. Models were created to predict air temperature at
hourly intervals from one to 12 hours ahead. Each ANN model,
consisting of a network architecture and set of associated parameters,
was evaluated by instantiating and training 30 networks and
calculating the mean absolute error (MAE) of the resulting networks
for some set of input patterns. The inclusion of seasonal input terms,
up to 24 hours of prior weather information, and a larger number of
processing nodes were some of the improvements that reduced
average prediction error compared to previous research across all
horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or
12.5%, less than the previous model. Prediction MAEs eight and 12
hours ahead improved by 0.17°C and 0.16°C, respectively,
improvements of 7.4% and 5.9% over the existing model at these
horizons. Networks instantiating the same model but with different
initial random weights often led to different prediction errors. These
results strongly suggest that ANN model developers should consider
instantiating and training multiple networks with different initial
weights to establish preferred model parameters.},
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {1},
	  number    = {10},
	  year      = {2007},
	  pages     = {3159 - 3166},
	  ee        = {https://publications.waset.org/pdf/10353},
	  url   	= {https://publications.waset.org/vol/10},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 10, 2007},
	}