Search results for: fermentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 142

Search results for: fermentation

52 Effect of Different Microbial Strains on Biological Pretreatment of Sugarcane Bagasse for Enzymatic Hydrolysis

Authors: Achiraya Jiraprasertwong, Erdogan Gulari, Sumaeth Chavadej

Abstract:

Among agricultural residues, sugarcane bagasse is one of the most convincing raw materials for the production of bioethanol due to its availability, and low cost through enzymatic hydrolysis and yeast fermentation. A pretreatment step is needed to enhance the enzymatic step. In this study, sugarcane bagasse (SCB), one of the most abundant agricultural residues in Thailand, was pretreated biologically with various microorganisms of white-rot fungus—Phanerochaete sordid (SK 7), Cellulomonas sp. (TISTR 784), and strain A 002 (Bacillus subtilis isolated from Thai higher termites). All samples with various microbial pretreatments were further hydrolyzed enzymatically by a commercial enzyme obtained from Aspergillus niger. The results showed that the pretreatment with the white-rot fungus gave the highest glucose concentration around two-fold higher when compared with the others.

Keywords: Sugarcane bagasse, Microorganisms, Pretreatment, Enzymatic hydrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
51 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Husk for Ethanol Production: Effect of Sugar Degradation

Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat

Abstract:

Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 1/min and 2.29 x 108 L/mole/min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.

Keywords: degradation, ethanol, hydrolysis, rice husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
50 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Huskfor Ethanol Production: Effect of Sugar Degradation

Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat

Abstract:

Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 min-1 and 2.29 x 108 L/mole-min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.

Keywords: degradation, ethanol, hydrolysis, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
49 Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

Authors: K. Beheshti Maal, R. Shafiee

Abstract:

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Keywords: Acetobacte, acetic acid bacteria, white – red cherry, food and agriculture biotechnology, industrial fermentation, vinegar

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5025
48 Fermentative Production and Characterization of Carboxymethyl Bacterial Cellulose Using Date Syrup

Authors: Marzieh Moosavi-Nasab, Ali R. Yousefi, Hamed Askari, Maryam Bakhtiyari

Abstract:

In this study, static batch fermentation was used for bacterial cellulose production in date syrup solution (Bx. 10%) at 28°C using Gluconacetobacter. xylinus (PTCC 1734). The physicochemical properties of standard Sigma CMC and the produced carboxymethyl bacterial cellulose (CMBC) were studied using FT-IR spectroscopy, X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM). According to the FT-IR spectra the bands at 1664 and 1431 cm-1 indicate that carboxylic acid groups and carboxylate groups exist on the surface. The SEM imaging of CMBC and CMC carried out in magnification of 1K. Comparing the SEM imaging obviously showed that the ribbon shape in CMC remained but the length of ribbons became shorter while that shape changed to flake shape for CMBC. Determination of the area under XRD patterns demonstrated that the crystallinity amount of CMC was more than that for CMBC (51.08% and 81.84% for CMBC and CMC, respectively).

Keywords: Carboxymethyl bacterial cellulose, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, X-ray diffractometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
47 Improvement of Monacolin K and Minimizing of Citrinin Content in Korkor 6 (RD 6) Red Yeast Rice

Authors: Em-on Chairote, Panatda Jannoey, Griangsak Chairote

Abstract:

A strain of Monascus purpureus CMU001 was used to prepare red yeast rice from Thai glutinous rice Korkor 6 (RD 6). Adding of different amounts of histidine (156, 312, 625 and 1250 mg in 100 g of rice grains)) under aerobic and air limitation (air-lock) condition were used in solid fermentation. Determination of the yield as well as monacolin K content was done. Citrinin content was also determined in order to confirm the safety use of prepared red yeast rice. It was found that under air-lock condition with 1250 mg of histidine addition gave the highest yield of 37.40 g of dried red yeast rice prepared from 100 g of rice. Highest 5.72 mg content of monacolin K was obtained under air-lock condition with 312 mg histidine addition. In the other hand, citrinin content was found to be less than 24462 ng/g of all dried red yeast rice samples under the experimental methods used in this work.

Keywords: Citrinin, Glutinous rice, Monacolin K, Red yeast rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
46 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor

Authors: Manal A. Mohsen, Ahmed Tawfik

Abstract:

Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).

Keywords: Cake wastewater industry, chemical oxygen demand (COD), hydrogen production (HP), up-flow anaerobic staged reactor (UASR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
45 Optimization of Lipase Production Using Bacillus subtilis by Response Surface Methodology

Authors: A. Shyamala Devi, K. Chitra Devi, R. Rajendiran

Abstract:

A total of 6 isolates of Bacillus subtilis were isolated from oil mill waste collected in Namakkal district, Tamilnadu, India. The isolated bacteria were screened using lipase screening medium containing Tween 80. BS-3 isolate exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, this isolate was selected for media optimization studies. Ten process variables were screened using Plackett–Burman design and were further optimized by central composite design of response surface methodology for lipase production in submerged fermentation. Maximum lipase production of 16.627 U/min/ml were predicted in medium containing yeast extract (9.3636g), CaCl2 (0.8986g) and incubation periods (1.813 days). A mean value of 16.98 ± 0.2286 U/min/ml of lipase was acquired from real experiments.

Keywords: Bacillus subtilis, extracellular lipase, Plackett–Burman design, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4148
44 Bioethanol Production from Enzymatically Saccharified Sunflower Stalks Using Steam Explosion as Pretreatment

Authors: Pilanee Vaithanomsat, Sinsupha Chuichulcherm, Waraporn Apiwatanapiwat

Abstract:

Sunflower stalks were analysed for chemical compositions: pentosan 15.84%, holocellulose 70.69%, alphacellulose 45.74%, glucose 27.10% and xylose 7.69% based on dry weight of 100-g raw material. The most optimum condition for steam explosion pretreatment was as follows. Sunflower stalks were cut into small pieces and soaked in 0.02 M H2SO4 for overnight. After that, they were steam exploded at 207 C and 21 kg/cm2 for 3 minutes to fractionate cellulose, hemicellulose and lignin. The resulting hydrolysate, containing hemicellulose, and cellulose pulp contained xylose sugar at 2.53% and 7.00%, respectively.The pulp was further subjected to enzymatic saccharification at 50 C, pH 4.8 citrate buffer) with pulp/buffer 6% (w/w)and Celluclast 1.5L/pulp 2.67% (w/w) to obtain single glucose with maximum yield 11.97%. After fixed-bed fermentation under optimum condition using conventional yeast mixtures to produce bioethanol, it indicated maximum ethanol yield of 0.028 g/100 g sunflower stalk.

Keywords: Enzymatic, steam explosion, sunflower stalk, ethanol production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
43 Hydrogen Production from Alcohol Wastewater by Upflow Anaerobic Sludge Blanket Reactors under Mesophilic Temperature

Authors: Thipsalin Poontaweegeratigarn, Sumaeth Chavadej, Pramoch Rangsunvigit

Abstract:

In this work, biohydrogen production via dark fermentation from alcohol wastewater using upflow anaerobic sludge blanket reactors (UASB) with a working volume of 4 L was investigated to find the optimum conditions for a maximum hydrogen yield. The system was operated at different COD loading rates (23, 31, 46 and 62 kg/m3d) at mesophilic temperature (37 ºC) and pH 5.5. The seed sludge was pretreated before being fed to the UASB system by boiling at 95 ºC for 15 min. When the system was operated under the optimum COD loading rate of 46 kg/m3d, it provided the hydrogen content of 27%, hydrogen yield of 125.1 ml H2/g COD removed and 95.1 ml H2/g COD applied, hydrogen production rate of 18 l/d, specific hydrogen production rate of 1080 ml H2/g MLVSS d and 1430 ml H2/ L d, and COD removal of 24%.

Keywords: Hydrogen production, Upflow anaerobic sludge blanket reactor (UASB), Optimum condition, Alcohol wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
42 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.

Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
41 Biodegradation of Lignocellulosic Residues of Water Hyacinth (Eichhornia crassipes) and Response Surface Methodological Approach to Optimize Bioethanol Production Using Fermenting Yeast Pachysolen tannophilus NRRL Y-2460

Authors: A. Manivannan, R. T. Narendhirakannan

Abstract:

The objective of this research was to investigate biodegradation of water hyacinth (Eichhornia crassipes) to produce bioethanol using dilute-acid pretreatment (1% sulfuric acid) results in high hemicellulose decomposition and using yeast (Pachysolen tannophilus) as bioethanol producing strain. A maximum ethanol yield of 1.14g/L with coefficient, 0.24g g-1; productivity, 0.015g l-1h-1 was comparable to predicted value 32.05g/L obtained by Central Composite Design (CCD). Maximum ethanol yield coefficient was comparable to those obtained through enzymatic saccharification and fermentation of acid hydrolysate using fully equipped fermentor. Although maximum ethanol concentration was low in lab scale, the improvement of lignocellulosic ethanol yield is necessary for large scale production.

Keywords: Acid hydrolysis, Biodegradation, Hemicellulose, Pachysolen tannophilus, Water hyacinth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
40 Industrial Production and Clinical Application of L-Asparaginase: A Chemotherapeutic Agent

Authors: Soni Yadav, Sitansu Kumar Verma, Jitendra Singh, Ajay Kumar

Abstract:

This article comprises detail information about L-asparaginase, encompassing topic such as various sources of L-asparaginase, mechanism and properties of L-asparaginase. Also describe the production, cultivation and purification of L-asparaginase along with information about the application of L-asparaginase. L-asparaginase catalyzes the conversion reaction to convert asparagine to aspartic acid and ammonia. Asparagine is a nutritional requirement for both normal and tumor cell. Present scenario has found that L-asparaginase has been found to be a best anti tumor or antileukemic agent. In the recent years this enzyme gained application in the field of clinical research pharmacologic and food industry. It has been characterized based on the enzyme assay principle hydrolyzing L-asparagine into L-aspartic acid and ammonia. It has been observed that eukaryotic microorganisms such as yeast and filamentous fungi have a potential for L-asparaginase production. L-asparaginase has been and is still one of the most lengthily studied therapeutic enzymes by scientist and researchers worldwide.

Keywords: L-asparaginase, antitumor, solid state fermentation, chemotherapeutic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6916
39 Identification Characterization and Production of Phytase from Endophytic Fungi

Authors: Yetti Marlida , Rina Delfita , Neni Gusmanizar, Gita Ciptaan

Abstract:

Phytases are acid phosphatase enzymes, which efficiently cleave phosphate moieties from phytic acid, thereby generating myo-inositol and inorganic phosphate. Thirty four isolates of endophytic fungi to produce of phytases were isolated from leaf, stem and root fragments of soybean. Screening of 34 isolates of endophytic fungi identified the phytases produced by Rhizoctonia sp. and Fusarium verticillioides . The phytase production were the best induced by phytic acid and rice bran compared the others inducer in submerged fermentation medium used. The phytase produced by both Rhizoctonia sp. and F. verticillioides have pH optimum at 4.0 and 5.0 respectively. The characterization of phytase from Fusarium verticillioides showed that temperature optimum was 500C and stability until 600C, the pH optimum 5.0 and pH stability was 2.5 – 6.0, and substrate specificity were rice bran>soybean meal>corn> coconut cake, respectively.

Keywords: endophytic fungus, phytase, soybean, Rhizoctoniasp., Fusarium verticillioides,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
38 Microbial Oil Production by Isolated Oleaginous Yeast Torulaspora globosa YU5/2

Authors: Ratanaporn Leesing, Ratanaporn Baojungharn

Abstract:

Microbial oil was produced by soil isolated oleaginous yeast YU5/2 in flask-batch fermentation. The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA and it was identified as Torulaspora globosa. T. globosa YU5/2 supported maximum values of 0.520 g/L/d, 0.472 g lipid/g cells, 4.16 g/L, and 0.156 g/L/d for volumetric lipid production rate, and specific yield of lipid, lipid concentration, and specific rate of lipid production respectively, when culture was performed in nitrogen-limiting medium supplemented with 80g/L glucose. Among the carbon sources tested, maximum cell yield coefficient (YX/S, g/L), maximum specific yield of lipid (YP/X, g lipid/g cells) and volumetric lipid production rate (QP, g/L/d) were found of 0.728, 0.237, and 0.619, respectively, using sweet potato tubers hydrolysates as carbon source.

Keywords: Microbial oil, oleaginous yeast, Torulasporaglobosa YU5/2, sweet potato tubers, kinetic parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
37 Determination of Effective Variables on Arachidonic Acid Production by Mortierella alpina CBS 754.68in Solid-State Fermentation using Plackett-Burman Screening Design

Authors: Z. Ghobadi, Z. Hamidi- Esfahani, M. H. Azizi

Abstract:

In the present study, the oleaginous fungus Mortierella alpina CBS 754.68 was screened for arachidonic acidproduction using inexpensive agricultural by-products as substrate. Four oilcakes were analysed to choose the best substrate among them. Sunflower oilcake was the most effective substrate for ARA production followed by soybean, colza and olive oilcakes. In the next step, seven variables including substrate particle size, moisture content, time, temperature, yeast extract supply, glucose supply and glutamate supply were surveyed and effective variables for ARA production were determined using a Plackett-Burman screening design. Analysis results showed that time (12 days), substrate particle size (1-1.4 mm) and temperature (20ºC) were the most effective variables for the highest level of ARA production respectively.

Keywords: Arachidonic acid, Mortierella alpine, Solid-statefermentation, Plackett-Burman design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
36 Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure

Authors: K. Reza-Yazdi, M. Fallah, M. Khodaparast, F. Kateb, M. Hosseini-Ghaffari

Abstract:

The objective of this study was to determine effect of dietary essential oil (EO) compounds, which contained cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass, and an organic carrier on feed intake, milk composition, and rumen fermentation of dairy cows during heat exposure. Thirty-two Holstein cows (days in milk= 60 ± 5) were assigned to one of two treatment groups: a Control and EO fed. The experiment lasted 28 days. Dry matter intake (DMI) was measured daily while and milk production was measured weekly. Our result showed that DMI and milk yield was decreased (P < 0.01) in control cows relative to EO cows. Furthermore, supplementation with EO was associated with a decrease in the molar proportion of propionate (P < 0.05) and increase (P < 0.05) in acetate to propionate ratio. In conclusion, EO supplementations in diets can be useful nutritional modification to alleviate for the decrease DMI and milk production during heat exposure in lactating dairy cows.

Keywords: Dairy cow, feed additive, plant extract.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3373
35 Effect of Capsule Storage on Viability of Lactobacillus bulgaricus and Streptococcus thermophilus in Yogurt Powder

Authors: Kanchana Sitlaothaworn

Abstract:

Yogurt capsule was made by mixing 14% w/v of reconstitution of skim milk with 2% FOS. The mixture was fermented by commercial yogurt starter comprising Lactobacillus bulgaricus and Streptococcus thermophilus. These yogurts were made as yogurt powder by freeze-dried. Yogurt powder was put into capsule then stored for 28 days at 4oc. 8ml of commercial yogurt was found to be the most suitable inoculum size in yogurt production. After freeze-dried, the viability of L. bulgaricus and S. thermophilus reduced from 109 to 107 cfu/g. The precence of sucrose cannot help to protect cell from ice crystal formation in freeze-dried process, high (20%) sucrose reduced L. bulgaricus and S. thermophilus growth during fermentation of yogurt. The addition of FOS had reduced slowly the viability of both L. bulgaricus and S. thermophilus similar to control (without FOS) during 28 days of capsule storage. The viable cell exhibited satisfactory viability level in capsule storage (6.7x106cfu/g) during 21 days at 4oC.

Keywords: Yogurt capsule, Lactobacillus bulgaricus, Streptococcus thermophilus, freeze-drying, sucrose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
34 Performance Evaluation of an Amperometric Biosensor using a Simple Microcontroller based Data Acquisition System

Authors: V. G. Sangam, Balasaheb M. Patre

Abstract:

In this paper we have proposed a methodology to develop an amperometric biosensor for the analysis of glucose concentration using a simple microcontroller based data acquisition system. The work involves the development of Detachable Membrane Unit (enzyme based biomembrane) with immobilized glucose oxidase on the membrane and interfacing the same to the signal conditioning system. The current generated by the biosensor for different glucose concentrations was signal conditioned, then acquired and computed by a simple AT89C51-microcontroller. The optimum operating parameters for the better performance were found and reported. The detailed performance evaluation of the biosensor has been carried out. The proposed microcontroller based biosensor system has the sensitivity of 0.04V/g/dl, with a resolution of 50mg/dl. It has exhibited very good inter day stability observed up to 30 days. Comparing to the reference method such as HPLC, the accuracy of the proposed biosensor system is well within ± 1.5%. The system can be used for real time analysis of glucose concentration in the field such as, food and fermentation and clinical (In-Vitro) applications.

Keywords: Biosensor, DMU, Glucose oxidase andMicrocontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
33 Enhanced Mycophenolic Acid Production by Penicillium brevicompactum with Enzymatically Hydrolyzed Casein

Authors: F. Ardestani, S. S. A. Fatemi, B. Yakhchali

Abstract:

Mycophenolic acid (MPA) is a secondary metabolite produced by Penicillium brevicompactum, which has antibiotic and immunosuppressive properties. In this study, the first, mycophenolic acid was produced in a fermentation process by Penicillium brevicompactum MUCL 19011 in shake flask using a base medium. The maximum MPA production, product yield and productivity of process were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L. h, respectively. Also the glucose consumption, biomass and MPA production profiles were investigated during batch cultivation. Obtained results showed that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of some various concentrations of enzymatically hydrolyzed casein on MPA production were evaluated. Maximum MPA production, product yield and productivity as 3.63 g/L, 49 mg/g glucose and 12.96 mg/L.h, respectively were obtained with using 30 g/L enzymatically hydrolyzed casein in culture medium. These values show an enhanced MPA production, product yield and process productivity pr as 116.8%, 132.8% and 163.2%, respectively.

Keywords: Penicillium brevicompactum, Enzymatically hydrolyzed casein, Mycophenolic acid, Submerged culture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
32 Effect of Different Treatments on Heavy Metal Concentration in Sugar Cane Molasses

Authors: Gomaa N. Abdel-Rahman, Nadia R. A. Nassar, Yehia A. Heikal, Mahmoud A. M. Abou-Donia, Mohamed M. Naguib, Mohamed Fadel

Abstract:

Cane molasses is used as a raw material for the production of baker’s yeast (Saccharomyces cerevisiae) in Egypt. The high levels of heavy metals in molasses cause a critical problem during fermentation and cause various kinds of technological difficulties (yield and quality of yeast become lower). The aim of the present study was to determine heavy metal concentrations (cadmium, nickel, lead, and copper) in crude and treated molasses obtained from the storage tanks of the baker’s yeast factory through four seasons. Also, the effect of crude molasses treatment by different methods (at laboratory scale) on heavy metals reduction and its comparison with factory treated molasses were conducted. The molasses samples obtained at autumn season had the highest values of all the studied heavy metals. The molasses treated by cation exchange resin then sulfuric acid had the lowest concentrations of heavy metals compared with other treatments.

Keywords: Molasses, baker’s yeast, heavy metals, treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
31 Energy Production from Marine Biomass: Fuel Cell Power Generation Driven by Methane Produced from Seaweed

Authors: Shinya Yokoyama, Katsunari Jonouchi, Kenji Imou

Abstract:

This paper discusses the utilization of marine biomass as an energy resource in Japan. A marine biomass energy system in Japan was proposed consisting of seaweed cultivation (Laminaria japonica) at offshore marine farms, biogas production via methane fermentation of the seaweeds, and fuel cell power generation driven by the generated biogas. We estimated energy output, energy supply potential, and CO2 mitigation in Japan on the basis of the proposed system. As a result, annual energy production was estimated to be 1.02-109 kWh/yr at nine available sites. Total CO2 mitigation was estimated to be 1.04-106 tonnes per annum at the nine sites. However, the CO2 emission for the construction of relevant facilities is not taken into account in this paper. The estimated CO2 mitigation is equivalent to about 0.9% of the required CO2 mitigation for Japan per annum under the Kyoto Protocol framework.

Keywords: CO2 mitigation, Fuel cell power generation, Laminaria japonica, Marine biomass, Seaweed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4744
30 A Study of Fatty Acid Production in the Batch Reactor via the Carbohydrate Fermentation by C. butyricum

Authors: H. Azan T., R. W. Lovitt, Nur K. T., N. Azwa. M. B.

Abstract:

Carbohydrate can be used as a substrate that can be consumed by C. butyricum and converted to useful chemicals such as acetic and butyric acid. Influence of concentration and types of carbohydrate to cell growth, carbohydrate consumed, productivity and carbon balance have been explored. Batch reactor was selected in this study to avoid contamination due to simpler operation system. Glucose was preferred as first types of carbohydrate to be tested. Six concentrations were studied from 0 to 28g/L. Eventually, 15g/L has shown the best concentration for glucose in term of growth rate (2.63h-1) and carbon balance (99.76% recovery). Comparison for types of carbohydrate was also conducted. 15g/L of xylose (monosaccharide) and starch (complex carbohydrate) was tested.  In term of growth rate and productivity, glucose showed the best carbohydrates. Results for this study showed that glucose and xylose produced more than 80% of acetic acid and less than 20% of butyric acid. Meanwhile, 63.1% of acetic acid and 36.9% of butyric acid were produced from starch. 

Keywords: C. butyricum, glucose, starch, xylose, carbohydrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
29 Biomass and Pigment Production by Monascus during Miniaturized Submerged Culture on Adlay

Authors: Supavej Maniyom, Gerard H. Markx

Abstract:

Three reactor types were explored and successfully used for pigment production by Monascus: shake flasks, and shaken and stirred miniaturized reactors. Also, the use of dielectric spectroscopy for the on-line measurement of biomass levels was explored. Shake flasks gave good pigment yields, but scale up is difficult, and they cannot be automated. Shaken bioreactors were less successful with pigment production than stirred reactors. Experiments with different impeller speeds in different volumes of liquid in the reactor confirmed that this is most likely due oxygen availability. The availability of oxygen appeared to affect biomass levels less than pigment production; red pigment production in particular needed very high oxygen levels. Dielectric spectroscopy was effectively used to continuously measure biomass levels during the submerged fungal fermentation in the shaken and stirred miniaturized bioreactors, despite the presence of the solid substrate particles. Also, the capacitance signal gave useful information about the viability of the cells in the culture.

Keywords: Chinese pearl barley, miniature submerged culture, Monascus pigment, biomass, capacitance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773
28 Reduce of Fermentation Time in Composting Process by Using a Special Microbial Consortium

Authors: S.H. Mirdamadian, S.M. Khayam-Nekoui, H. Ghanavati

Abstract:

Composting is the process in which municipal solid waste (MSW) and other organic waste materials such as biosolids and manures are decomposed through the action of bacteria and other microorganisms into a stable granular material which, applied to land, as soil conditioner. Microorganisms, especially those that are able to degrade polymeric organic material have a key role in speed up this process. The aim of this study has been established to isolation of microorganisms with high ability to production extracellular enzymes for degradation of natural polymers that are exists in MSW for decreasing time of degradation phase. Our experimental study for isolation designed in two phases: in first phase we isolated degrading microorganism with selected media that consist a special natural polymer such as cellulose, starch, lipids and etc as sole source of carbon. In second phase we selected microorganism that had high degrading enzyme production with enzymatic assay for seed production. However, our findings in pilot scale have indicated that usage of this microbial consortium had high efficiency for decreasing degradation phase.

Keywords: Biodegradation, Compost, Municipal Solid Waste, Waste Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
27 Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF

Authors: Ishtiaq Ahmed, Muhammad Anjum Zia, Hafiz Muhammad Nasir Iqbal

Abstract:

The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of product. Several kinetic parameters like pretreatment, extraction solvent, substrate concentration, initial moisture content, pH, incubation temperature and inoculum size were optimized for enhanced production of third most demanded industrially important cellulase. The maximum cellulase enzyme activity 398.10±2.43 μM/mL/min was achieved when proximally analyzed lignocellulosic substrate wheat straw inocubated at 2% HCl as pretreatment tool along with distilled water as extraction solvent, 3% substrate concentration 40% moisture content with optimum pH 5.5 at 45°C incubation temperature and 10% inoculum size.

Keywords: Cellulase, Lignocellulosic residue, Processoptimization, Proximal analysis, SSF, Trichoderma viride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
26 Influence of Maturation Degree of Arbutus (Arbutus unedo L.) Fruits in Spirit Composition and Quality

Authors: Goreti Botelho, Filomena Gomes, Fernanda M. Ferreira, Ilda Caldeira

Abstract:

The strawberry tree (Arbutus unedo L.) is a small tree or shrub from botanical Ericaceae family that grows spontaneously nearby the Mediterranean basin and produce edible red fruits. A traditional processed fruit application, in Mediterranean countries, is the production of a spirit (known as aguardente de medronho, in Portugal) obtained from the fermented fruit. The main objective of our study was to contribute to the knowledge about the influence of the degree of maturation of fruits in the volatile composition and quality of arbutus spirit. The major volatiles in the three distillates fractions (head, heart and tail) obtained from fermentation of two different fruit maturation levels were quantified by GC-FID analysis and ANOVA one-way was performed. Additionally, the total antioxidant capacity and total phenolic compounds of both arbutus fruit spirits were determined, by ABTS and Folin-Ciocalteau method, respectively. The methanol concentration is higher (1022.39 g/hL a.a.) in the spirit made from fruits with highest total soluble solids, which is a value above the legal limit (1000 g/hL a.a.). Overall, our study emphasizes, for the first time, the influence of maturation degree of arbutus fruits in the spirit volatile composition and quality.

Keywords: Arbutus fruit, maturation, quality, spirit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
25 Development of Efficient Fungal Biomass-Degrading Enzyme Mixtures for Saccharification of Local Lignocellulosic Feedstock

Authors: W. Wanmolee, W. Sornlake, N. Laosiripojana, V. Champreda

Abstract:

Conversion of lignocellulosic biomass is the basis process for production of fuels, chemicals and materials in the sustainable biorefinery industry. Saccharification of lignocellulosic biomass is an essential step which produces sugars for further conversion to target value-added products e.g. bio-ethanol, bio-plastic, g-valerolactone (GVL), 5-hydroxymethylfuroic acid (HMF), levulinic acid, etc. The goal of this work was to develop an efficient enzyme for conversion of biomass to reducing sugar based on crude fungal enzyme from Chaetomium globosum BCC5776 produced by submerged fermentation and evaluate its activity comparing to a commercial Acremonium cellulase. Five local biomasses in Thailand: rice straw, sugarcane bagasse, corncobs, corn stovers, and palm empty fruit bunches were pretreated and hydrolyzed with varying enzyme loadings. Saccharification of the biomass led to different reducing sugar levels from 115 mg/g to 720 mg/g from different types of biomass using cellulase dosage of 9 FPU/g. The reducing sugar will be further employed as sugar feedstock for production of ethanol or commodity chemicals. This work demonstrated the use of promising enzyme candidate for conversion of local lignocellulosic biomass in biorefinery industry.

Keywords: Biomass, Cellulase, Chaetomiun glubosum, Saccharification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
24 Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Authors: B. R. Madushan, S. B. Navaratne, I. Wickramasinghe

Abstract:

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

Keywords: Biological leavening agent, coconut toddy, fermentation, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
23 Optimization of Conditions for Xanthan Gum Production from Waste Date in Submerged Fermantation

Authors: S. Moshaf, Z. Hamidi-Esfahani, M. H. Azizi

Abstract:

Xanthan gum is one of the major commercial biopolymers. Due to its excellent rheological properties xanthan gum is used in many applications, mainly in food industry. Commercial production of xanthan gum uses glucose as the carbon substrate; consequently the price of xanthan production is high. One of the ways to decrease xanthan price, is using cheaper substrate like agricultural wastes. Iran is one of the biggest date producer countries. However approximately 50% of date production is wasted annually. The goal of this study is to produce xanthan gum from waste date using Xanthomonas campestris PTCC1473 by submerged fermentation. In this study the effect of three variables including phosphor and nitrogen amount and agitation rate in three levels using response surface methodology (RSM) has been studied. Results achieved from statistical analysis Design Expert 7.0.0 software showed that xanthan increased with increasing level of phosphor. Low level of nitrogen leaded to higher xanthan production. Xanthan amount, increasing agitation had positive influence. The statistical model identified the optimum conditions nitrogen amount=3.15g/l, phosphor amount=5.03 g/l and agitation=394.8 rpm for xanthan. To model validation, experiments in optimum conditions for xanthan gum were carried out. The mean of result for xanthan was 6.72±0.26. The result was closed to the predicted value by using RSM.

Keywords: Optimization, RSM, Waste date, Xanthan gum, Xanthomonas Campestris

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612