Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF

Authors: Ishtiaq Ahmed, Muhammad Anjum Zia, Hafiz Muhammad Nasir Iqbal

Abstract:

The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of product. Several kinetic parameters like pretreatment, extraction solvent, substrate concentration, initial moisture content, pH, incubation temperature and inoculum size were optimized for enhanced production of third most demanded industrially important cellulase. The maximum cellulase enzyme activity 398.10±2.43 μM/mL/min was achieved when proximally analyzed lignocellulosic substrate wheat straw inocubated at 2% HCl as pretreatment tool along with distilled water as extraction solvent, 3% substrate concentration 40% moisture content with optimum pH 5.5 at 45°C incubation temperature and 10% inoculum size.

Keywords: Cellulase, Lignocellulosic residue, Processoptimization, Proximal analysis, SSF, Trichoderma viride.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083051

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537

References:


[1] M. C. Chang, "Harnessing energy from plant biomass," Curr. Opin. Chem. Biol., vol. 11, pp. 677-684, 2007.
[2] D. Damisa, J. B. Ameh, and V. J. Umoh, "Effect of chemical pretreatment of some lignocellulosic wastes on the recovery of cellulase from Aspergillus niger AH3 mutant," Afr. J. Biotechnol., vol. 7, no. 14, pp. 2444-2450, 2008.
[3] L. R. Lynd, R. T. Elander, and C. E. Wyman, "Likely features and costs of mature biomass ethanol technology," Appl. Biochem. Biotechnol., vol. 57-58, pp. 741-761, 1996.
[4] M. Raimbault, "General and microbiological aspects of solid substrate fermentation," Elect. J. Biotechnol., vol. 27, pp. 498-503, 1998.
[5] K. H. Brijwani, S. Oberoi, and P. V. Vadlani, "Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran," Proc. Biochem., vol. 45, pp. 120-128, 2010.
[6] L. R. Lynd, C. E. Wyman, and T. U. Gerngross, "Biocommodity engineering," Biotechnol. Prog., vol. 15 pp. 777-793, 1999.
[7] R. H. Marchessault, and P. R. Sundararajan, "Cellulose, In G. O. Aspinall (ed.), the polysaccharides," vol. 2, Academic Press, Inc., New York, 1993, pp. 11-95.
[8] R. M. J. Brown, and I. M. Saxena, "Cellulose biosynthesis: a model for understanding the assembly of biopolymers," Plant Physiol. Biochem., vol. 38, pp. 57-67, 2000.
[9] M. Koyama, W. Helbert, T. Imai, J. Sugiyama, and B. Henrissat, "Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose," Proc. Nat. Acad. Sci. USA., Vol. 94, pp. 9091-9095, 1997.
[10] L. M. J. Kroon-Batenburg, and J. Kroon, "The crystal and molecular structures of cellulose I and II," Glycoconj. J. vol. 14, pp. 677-690, 1997.
[11] Y. W. Chung, H. Yi-Ru, C. C. Ng, H. Chan, H. T. Lin, T. Wen-Sheng, and Y. T. Shyu, "Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05," Enz. Microb. Technol., Vol. 44, no. (6-7), pp. 373-379, 2009.
[12] M. Dashtban, H. Schraft, and W. Qin, "Fungal bioconversion of lignocellulosic residues; opportunities and perspectives," Int. J. Biol. Sci., vol. 5, no. 6, pp. 578-95, 2009.
[13] R. R. Singhania, R. K. Sukumaran, A. K. Patel, C. Larroche, and A. Pandey, "Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases," Enz. Microb. Technol., vol. 46, pp. 541-549, 2010.
[14] C. S. Farinas, M. M. Loyo, A. B. Junior, P. W. Tardioli, V. B. Neto, and S. Couri, "Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature," New Biotechnol., vol. 00, no. 00, pp. 1-6, 2010.
[15] Z. Wen, W. Liao, and S. Chen, "Production of cellulase/b-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure," Proc. Biochem., vol. 40, pp. 3087-94, 2005.
[16] B. C. Stockton, D. J. Mitchell, K. Grohmann, and M. E. Himmel, "Optimum β-D glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnol. Lett., vol. 13, pp. 57-62, 1991.
[17] K. Reczey, Z. Szengyel, R. Eklund, and G. Zacchi, "Cellulase production by T. reesei," Bioresour. Technol., vol. 57, pp. 25-30, 1996.
[18] J. P. Smits, A. Rinzema, J. Tramper, H. M. van Sonsbeek, and W. Knol, "Solid state fermentation of wheat bran by Trichoderma reesei QM 9414: substrate compositional changes, C balance enzyme production, growth and kinetics," Appl. Microbol. Biotechnol., vol. 46, pp. 489-96, 1996.
[19] U. Holker, M. Hofer, J. Lenz, "Biotechnological advantages of laboratory scale solid state fermentation with fungi," Appl. Microbiol. Biotechnol., Vol. 64, pp. 175-86, 2004.
[20] Y. Han, and H. Chen, "Synergism between corn stover protein and cellulase," Enz. Microb. Technol., vol. 41, pp. 638-645, 2007.
[21] Y. Han, and H. Chen, "Characterization of beta-glucosidase from corn stover and its application in simultaneous saccharification and fermentation," Bioresour. Technol., vol. 99, pp. 6081-6087, 2008.
[22] C. Birsan, P. Johnson, M. Joshi, A. MacLeod, L. McIntosh, V. Monem, M. Nitz, D. R. Rose, D. Tull, W. W. Wakarchuck, Q. Wang, R. A. J. Warren, A. White and S. G. Withers, (1998) Mechanisms of cellulases and xylanases," Biochem. Soc. Trans., vol. 26, pp. 156-160, 1998.
[23] S. G. Withers, "Mechanisms of glycosyl transferases and hydrolyses," Carbohydr. Polym., vol. 44, pp. 325-337, 2001.
[24] S. S. Dhillon, R. K. Gill, S. S. Gill, and M. Singh, "Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger," Intern. J. Environ. Stud., vol. 61, no. 2, pp. 199-210, 2004.
[25] H. N. Ariffin, M. S. Abdullah, U. Kalsom, Y. Shira, and M. A. Hassan, "Production and Characterisation of Cellulase by Bacillus Pumilus Eb3," Int. J. Eng. Technol., vol. 3, pp. 47-53, 2006.
[26] M. Dubois, K. A. Gibes, J. K. Hamilton, P. A. Rebers, and F. Smith, "Colorimetric method for determination of sugars and related substances," Anal. Chem., vol. 28, pp. 350-353, 1956.
[27] G. L. Miller, "Use of DNS reagent for the measurement of reducing sugar," Anal. Chem., vol. 31, pp. 426-428, 1959.
[28] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, "Protein measurement with folin phenol reagent," J. Biol. Chem., vol. 193, pp. 265-275, 1951.
[29] C. Krishna, and M. Chandrasekaran, "Banana waste as substrate for ╬▒- amylase production by Bacillus subtilis (CBTK-106) under solid state fermentation," Appl. Microbiol. Biotechnol., vol. 46, pp. 106-111, 1996.
[30] T. K. Ghose, "Measurement of cellulase activities," Pur. Appl. Chem., vol. 59, pp. 257-268, 1987.
[31] R. G. D. Steel, and J. H. Torrie, "Principal and Procedures of Statistics Mc.Gra. Hill. Book co.inc.2nd New York (USA), 1982.
[32] O. I. A. Oluremi, I. A. Andrew, and J. Ngi, "Evaluation of the nutritive potential of the peels of some citrus fruit varieties as fedingstuffs in livestock production," Pak. J. Nutrit., vol. 6, no. 6, pp. 653-656, 2007.
[33] M. R. Rowell, "Opportunities for lignocellulosic materials and composites. Emerging technologies for material and chemicals from biomass: Proceedings of symposium. Washington, DC: Americ. Chem. Soc. Chap. 2, 1992, pp. 26-31.
[34] P. McKendry, "Energy production from biomass: overview of biomass," Bioresour. Technol., vol. 83, pp. 37-43, 2002.
[35] S. Prassad, A. Singh, and H.C. Joshi, "Ethanol as an alternative fuel from agricultural, industrial and urban residues," Resour. Conserv. Recycl., Vol. 50, pp. 1-39, 2007.
[36] F. Carvalheiro, , T. Silva-Fernandes, L. C. Duarte, and F. M. Gírio, "Wheat straw autohydrolysis: process optimization and products characterization," Appl. Biochem. Biotechnol., vol. 153, no. 1-3, pp. 84- 93, 2009.
[37] M. Pedersen, and A. S. Meyer, "Lignocellulose pretreatment severity relating pH to biomatrix opening," New Biotechnol., doi: 10. 1016/j.nbt. 2010. 05.003.
[38] M. U. Dahoot, and M. H. Noomrio, "Microbial production of cellulases by Aspergillus fumigatus using wheat straw as a carbon source," J. isl. Acad. sci., vol. 9, no. 4, pp. 119-124, 1996.
[39] H. Knappert, A. Singh, and H. C. Joshi, "Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic saccharification," Ann. Rev. Ene. Environ., vol. 25, pp. 199-244, 1981.
[40] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, and M. Holtzapple, "Features of promising technologies for pretreatment of lignocellulosic biomass," Bioresour. Technol., vol. 96, pp. 673-86, 2005.
[41] M. S. Chandra, B. R. Reddy, and Y. L. Choi, "Optimization of Extraction of Fpase from the Fermented Bran of Aspergillus Niger in Solid State Fermentation," J. Appl. Biol. Chem., vol. 51, no. 4, pp. 155- 159, 2008.
[42] S. Malathi, and R. Chakraborty, "Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent," Appl. Environ. Microbiol., Vol. 57, pp. 712-716, 1991.
[43] S. A. Ahmed, "Optimization of Production and Extraction Parameters of Bacillus megaterium Levansucrase Using Solid-state Fermentation," J. Appl. Sci. Res., vol. 4, no. 10, pp. 1199-1204, 2008.
[44] R. Da-Silva, E. S. Lago, C. W. Merheb, M. M. Macchion, Y. K. Park, and E. Gomes, "Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe," Brazil. J. Microbiol., vol. 36, pp. 235-241, 2005.
[45] K. S. M. S. Raghavarao, T. V. Ranganathan, and N. G. Karanth, "Some engineering aspects of solid-state fermentation," Biochem. Eng. J., vol. 13, pp. 127-135, 2003.
[46] M. Regina, F. Broetto, G. Giovannozzi-Sermanni, R. Marabotini, and C. Peranni, "Influence of stationary and bioreactor cultivation on Lentinula edodes (Berk) Pegler lignocellulolytic activity," Braz. Arch. Biol. Technol., vol. 51, pp. 223-233, 2008.
[47] J. Liu, and J. Yang, "Cellulase Production by Trichoderma koningii AS3.4262 in Solid-State Fermentation Using Lignocellulosic Waste from the Vinegar Industry," Food Technol. Biotechnol., vol. 45, no. 4, pp. 420-425, 2007.
[48] R. R. Singhania, R. K. Sukumaran, and A. Pandey, "Improved Cellulase Production by Trichoderma reesei RUT C30 under SSF through Process Optimization," Appl. Biochem. Biotechnol., vol. 142, no. 1, pp. 60-70, 2007.
[49] Y. Sun, and J. Cheng, "Hydrolysis of lignocellulosic material for ethanol production: a review," Bioresour. Technol., vol. 83, pp. 1-11, 2002.
[50] S. W. Cheung, and B. C. Anderson, "Laboratory investigation of ethanol production from municipal primary waste water," Bioresour. Technol., vol. 59, pp. 81-96, 1997.
[51] X. J. B. Wang, and Y.Lian, "Optimization of Multienzyme production by two mixed strains in solid-state fermentation," Appl. Microbiol. Biotechnol., vol. 73, pp. 533-540, 2006.
[52] X. Fang, Y. Shen, J. Zhao, X. Bao, and Y. Qu, "Status and prospect of lignocellulosic bioethanol production in China," Bioresour. Technol., vol. 101, pp. 4814-4819, 2010.
[53] G. Narasimh, "Nutrient effects on production of cellulytic enzymes by Aspergillus niger," Afr. J. Biotechnol., vol. 5, pp. 472-476, 2006.
[54] M. Sohail, R. Siddiqi, A. Ahmad, and S. A. Khan, "Cellulase production from Aspergillus niger MS82: effect of pH and temperature," New Biotechnol., vol. 25, no. 6, pp. 437-441, 2009.
[55] S. Ahmed, A. Bashir, H. Saleem, M. Saadia, and A. Jamil, "Production and purification of cellulose degrading Enzymes from a filamentous fungus Trichoderma harzianum," Pak. J. Bot., vol. 41, no. 3, pp. 1411- 1419, 2009.
[56] I. A. Rodriguez, C. P. Escobedo, M. G. Z. Paramo, E. L. Romero, and H. C. Camacho, "Degradation of cellulose by the bean-pathogenic fungus Colletotrichum lindemuthianum. Produciton of extracellular cellulolytic enzymes by cellouse induction," Antonie van Leeuwenhock., vol. 87, pp. 301-310, 2005.
[57] A. P. Niranjane, P. Madhou, and T. W. Stevenson, (2007) "The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantean," Enz. Microb. Technol., vol. 40, pp. 1464-1468, 2007.
[58] I. Haq, S. Khurshid, H. Ali, M. Ashraf, A. Qadeer, and M. I. Rajoka, "Mutation of Aspergillus niger for hyper production of citric acid from black strap molasses," W. J. Microbiol. Biol. vol.17, pp. 35-37, 2001.
[59] H. Xiong, N.von. Weymarn, M. Leisola, and O. Turunen, "Influence of pH on the production of xylanase by Trichoderma reesei Rut C-30," Proc. Biochem., vol. 39, no. 6, pp. 729-733, 2004.
[60] S. Pushalkar, K. K. Rao, and K. Menon, "Production of ß-glucosidase by Aspergillus terrus," Curr. Microbiol., vol. 30, pp. 255-258, 1995.
[61] A. J. Sami, M. Awais, and A. R. Shakoori (2008). "Preliminary studies on the production of endo-1, 4-β-Dglucanases activity produced by Enterobacter cloacae," Afri. J. Biotechnol., vol. 7, no. 9, pp. 1318-1322, 2008.
[62] P. F. Omojasola, and O. P. Jilani, (2009) "Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on plantain peel," Res. J. Microbiol., vol. 4, no. 2, pp. 67-74, 2009.
[63] I. Gomes, J. Gomes, W. Steiner, and H. Esterbauer, "Production of cellulase and xylanase by a wild strain of Trichoderma viride," Appl Microbiol Biotechnol., vol. 36, pp. 701-707, 1991.
[64] P. F. Omojasola, O. P. Jilani, and S. A. Ibyami, "Cellulase production by some fingi cultured on pine apple waste," Nat. Sci., vol. 6, no. 2, pp. 64- 79, 2008.
[65] M. Fadel, "Production physiology of cellulose and ß-glucosidase enzymes of Aspergillus niger grown under solid state fermentation conditions," Onlin. J. Biol. Sci., vol. 1, no. 5, pp. 401-411, 2000.
[66] D. K. Sharma, M. Tiwari, and B. K. Behere, "Solid state fermentation of new substrates for production of cellulose and other biopolymer hydrolyzing enzyme," Appl. Biochem. Biotechnol., vol. 15, pp. 495-500, 1995.
[67] P. K. A. Muniswaran, and N. C. L.Charyulu, "Solid state fermentation of coconut cario pith for cellulase production," Enz. Microb. Technol., vol. 16, pp. 436-446, 1994.