Search results for: Achiraya Jiraprasertwong
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Achiraya Jiraprasertwong

2 Effect of Different Microbial Strains on Biological Pretreatment of Sugarcane Bagasse for Enzymatic Hydrolysis

Authors: Achiraya Jiraprasertwong, Erdogan Gulari, Sumaeth Chavadej

Abstract:

Among agricultural residues, sugarcane bagasse is one of the most convincing raw materials for the production of bioethanol due to its availability, and low cost through enzymatic hydrolysis and yeast fermentation. A pretreatment step is needed to enhance the enzymatic step. In this study, sugarcane bagasse (SCB), one of the most abundant agricultural residues in Thailand, was pretreated biologically with various microorganisms of white-rot fungus—Phanerochaete sordid (SK 7), Cellulomonas sp. (TISTR 784), and strain A 002 (Bacillus subtilis isolated from Thai higher termites). All samples with various microbial pretreatments were further hydrolyzed enzymatically by a commercial enzyme obtained from Aspergillus niger. The results showed that the pretreatment with the white-rot fungus gave the highest glucose concentration around two-fold higher when compared with the others.

Keywords: Sugarcane bagasse, Microorganisms, Pretreatment, Enzymatic hydrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
1 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: Defective autoparts products, Bayesian framework, Generalized linear mixed model (GLMM), Risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901