Search results for: phytochemical properties.
1834 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331833 Simulating Dynamics of Thoracolumbar Spine Derived from Life MOD under Haptic Forces
Authors: K. T. Huynh, I. Gibson, W. F. Lu, B. N. Jagdish
Abstract:
In this paper, the construction of a detailed spine model is presented using the LifeMOD Biomechanics Modeler. The detailed spine model is obtained by refining spine segments in cervical, thoracic and lumbar regions into individual vertebra segments, using bushing elements representing the intervertebral discs, and building various ligamentous soft tissues between vertebrae. In the sagittal plane of the spine, constant force will be applied from the posterior to anterior during simulation to determine dynamic characteristics of the spine. The force magnitude is gradually increased in subsequent simulations. Based on these recorded dynamic properties, graphs of displacement-force relationships will be established in terms of polynomial functions by using the least-squares method and imported into a haptic integrated graphic environment. A thoracolumbar spine model with complex geometry of vertebrae, which is digitized from a resin spine prototype, will be utilized in this environment. By using the haptic technique, surgeons can touch as well as apply forces to the spine model through haptic devices to observe the locomotion of the spine which is computed from the displacement-force relationship graphs. This current study provides a preliminary picture of our ongoing work towards building and simulating bio-fidelity scoliotic spine models in a haptic integrated graphic environment whose dynamic properties are obtained from LifeMOD. These models can be helpful for surgeons to examine kinematic behaviors of scoliotic spines and to propose possible surgical plans before spine correction operations.Keywords: Haptic interface, LifeMOD, spine modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051832 Evaluation of Sensitometric Properties of Radiographic Films at Different Processing Solutions
Authors: Mojiri M, Ghazi Khanloo Sani K, Moghim Beigi A
Abstract:
The aim of this study was to compare the sensitometric properties of commonly used radiographic films processed with chemical solutions in different workload hospitals. The effect of different processing conditions on induced densities on radiologic films was investigated. Two accessible double emulsions Fuji and Kodak films were exposed with 11-step wedge and processed with Champion and CPAC processing solutions. The mentioned films provided in both workloads centers, high and low. Our findings displays that the speed and contrast of Kodak filmscreen in both work load (high and low) is higher than Fuji filmscreen for both processing solutions. However there was significant differences in films contrast for both workloads when CPAC solution had been used (p=0.000 and 0.028). The results showed base plus fog density for Kodak film was lower than Fuji. Generally Champion processing solution caused more speed and contrast for investigated films in different conditions and there was significant differences in 95% confidence level between two used processing solutions (p=0.01). Low base plus fog density for Kodak films provide more visibility and accuracy and higher contrast results in using lower exposure factors to obtain better quality in resulting radiographs. In this study we found an economic advantages since Champion solution and Kodak film are used while it makes lower patient dose. Thus, in a radiologic facility any change in film processor/processing cycle or chemistry should be carefully investigated before radiological procedures of patients are acquired.Keywords: Sensitometry, densitometry, Radiographic film, processing solution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271831 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.
Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12101830 Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants
Authors: Dionisios Panagiotaras, Elias Stathatos, Dimitrios Papoulis
Abstract:
Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.
Keywords: Clay mineral, nanotubular Halloysite, Photocatalysis, Titanium Dioxide, Silver modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25301829 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties
Authors: J. Samuel, S. Al-Enezi, A. Al-Banna
Abstract:
High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.
Keywords: HDPE, carbon nanofiber, ionic liquid, complex viscosity, modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561828 Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties
Authors: Chee-Ming Chan
Abstract:
In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.Keywords: natural fibres, clay bricks, strength, water absorption, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46601827 The Effects of TiO2 Nanoparticles on Tumor Cell Colonies: Fractal Dimension and Morphological Properties
Authors: T. Sungkaworn, W. Triampo, P. Nalakarn, D. Triampo, I. M. Tang, Y. Lenbury, P. Picha
Abstract:
Semiconductor nanomaterials like TiO2 nanoparticles (TiO2-NPs) approximately less than 100 nm in diameter have become a new generation of advanced materials due to their novel and interesting optical, dielectric, and photo-catalytic properties. With the increasing use of NPs in commerce, to date few studies have investigated the toxicological and environmental effects of NPs. Motivated by the importance of TiO2-NPs that may contribute to the cancer research field especially from the treatment prospective together with the fractal analysis technique, we have investigated the effect of TiO2-NPs on colony morphology in the dark condition using fractal dimension as a key morphological characterization parameter. The aim of this work is mainly to investigate the cytotoxic effects of TiO2-NPs in the dark on the growth of human cervical carcinoma (HeLa) cell colonies from morphological aspect. The in vitro studies were carried out together with the image processing technique and fractal analysis. It was found that, these colonies were abnormal in shape and size. Moreover, the size of the control colonies appeared to be larger than those of the treated group. The mean Df +/- SEM of the colonies in untreated cultures was 1.085±0.019, N= 25, while that of the cultures treated with TiO2-NPs was 1.287±0.045. It was found that the circularity of the control group (0.401±0.071) is higher than that of the treated group (0.103±0.042). The same tendency was found in the diameter parameters which are 1161.30±219.56 μm and 852.28±206.50 μm for the control and treated group respectively. Possible explanation of the results was discussed, though more works need to be done in terms of the for mechanism aspects. Finally, our results indicate that fractal dimension can serve as a useful feature, by itself or in conjunction with other shape features, in the classification of cancer colonies.Keywords: Tumor growth, Cell colonies, TiO2, Nanoparticles, Fractal, Morphology, Aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061826 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems
Authors: Juhi Faridi, Mohd. Ajmal Kafeel
Abstract:
The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.
Keywords: Analog circuits, digital circuits, memristors, neuromorphic computing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12151825 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints
Authors: J. Dutta, Narendranath S.
Abstract:
In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.
Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27701824 Growth and Yield Assessment of Two Types of Sorghum-Sudangrass Hybrids as Affected by Deficit Irrigation
Authors: A. Abbas Khalaf, L. Issazadeh, Z. Arif Abdullah, J. Hassanpour
Abstract:
In order to evaluate the growth and yield properties of two Sorghum-Sudangrass hybrids under different irrigation levels, an investigation was done in the experiment site of Collage of Agriculture, University of Duhok, Kurdistan region of Iraq (36°5´38⸗ N, 42°52´02⸗ E) in the years 2015-16. The experiment was conducted under Randomized Complete Block Design (RCBD) with three replications, which main factor was irrigation treatments (I100, I75 and I50) according to evaporation pan class A and type of Sorghum-Sudangrass hybrids (KH12SU9001, G1) and (KH12SU9002, G2) were factors of subplots. The parameters studied were: plant height (cm), number of green leaves per plant; leaf area (m2/m2), stem thickness (mm), percent of protein, fresh and dry biomass (ton.ha-1) and also crop water productivity. The results of variance analysis showed that KH12SU9001 variety had more amount of leaf area, percent of protein, fresh and dry biomass yield in comparison to KH12SU9002 variety. By comparing effects of irrigation levels on vegetative growth and yield properties, results showed that amount of plant height, fresh and dry biomass weight was decreased by decreasing irrigation level from full irrigation regime to 5 o% of irrigation level. Also, results of crop water productivity (CWP) indicated that improvement in quantity of irrigation would impact fresh and dry biomass yield significantly. Full irrigation regime was recorded the highest level of CWP (1.28-1.29 kg.m-3).
Keywords: Deficit irrigation, growth, Sorghum-Sudangrass hybrid, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5911823 Fuzzy Ideals in Near-subtraction Semigroups
Authors: D.R Prince Williams
Abstract:
In this paper,we introduce a notion of fuzzy ideals in near-subtraction semigroups and study their related properties.
Keywords: subtraction algebra, subtraction semigroup, an ideal, near-subtraction semigroup, fuzzy level set, fuzzy ideal, fuzzy homomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531822 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass
Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour
Abstract:
Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.Keywords: Apatite, bioactivity, biomedical applications sol-gel processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8321821 Stress Relaxation of Date at Different Temperature and Moisture Content of Product: A New Approach
Authors: D. Zare, M. Alirezaei, S.M. Nassiri
Abstract:
Iran is one of the greatest producers of date in the world. However due to lack of information about its viscoelastic properties, much of the production downgraded during harvesting and postharvesting processes. In this study the effect of temperature and moisture content of product were investigated on stress relaxation characteristics. Therefore, the freshly harvested date (kabkab) at tamar stage were put in controlled environment chamber to obtain different temperature levels (25, 35, 45, and 55 0C) and moisture contents (8.5, 8.7, 9.2, 15.3, 20, 32.2 %d.b.). A texture analyzer TAXT2 (Stable Microsystems, UK) was used to apply uniaxial compression tests. A chamber capable to control temperature was designed and fabricated around the plunger of texture analyzer to control the temperature during the experiment. As a new approach a CCD camera (A4tech, 30 fps) was mounted on a cylindrical glass probe to scan and record contact area between date and disk. Afterwards, pictures were analyzed using image processing toolbox of Matlab software. Individual date fruit was uniaxially compressed at speed of 1 mm/s. The constant strain of 30% of thickness of date was applied to the horizontally oriented fruit. To select a suitable model for describing stress relaxation of date, experimental data were fitted with three famous stress relaxation models including the generalized Maxwell, Nussinovitch, and Pelege. The constant in mentioned model were determined and correlated with temperature and moisture content of product using non-linear regression analysis. It was found that Generalized Maxwell and Nussinovitch models appropriately describe viscoelastic characteristics of date fruits as compared to Peleg mode.Keywords: Stress relaxation, Viscoelastic properties, Date, Texture analyzer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19121820 Effect of Spray Stand-off on Hardness of Thermally Sprayed Coatings
Authors: M.Jalali Azizpour, S.Norouzi, H.Mohammadi Majd
Abstract:
The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).Keywords: HVOF, Micro-indentation, Thermal spray, WC-Co.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23321819 In vitro Studies of Mucoadhesiveness and Release of Nicotinamide Oral Gels Prepared from Bioadhesive Polymers
Authors: Sarunyoo Songkro, Naranut Rajatasereekul, Nipapat Cheewasrirungrueng
Abstract:
The aim of the present study was to evaluate the mucoadhesion and the release of nicotinamide gel formulations using in vitro methods. An agar plate technique was used to investigate the adhesiveness of the gels whereas a diffusion apparatus was employed to determine the release of nicotinamide from the gels. In this respect, 10% w/w nicotinamide gels containing bioadhesive polymers: Carbopol 934P (0.5-2% w/w), hydroxypropylmethyl cellulose (HPMC) (4-10% w/w), sodium carboxymethyl cellulose (SCMC) (4-6% w/w) and methylcellulose 4000 (MC) (3-5% w/w) were prepared. The gel formulations had pH values in the range of 7.14 - 8.17, which were considered appropriate to oral mucosa application. In general, the rank order of pH values appeared to be SCMC > MC4000 > HPMC > Carbopol 934P. Types and concentrations of polymers used somewhat affected the adhesiveness. It was found that anionic polymers (Carbopol 934 and SCMC) adhered more firmly to the agar plate than the neutral polymers (HPMC and MC 4000). The formulation containing 0.5% Carbopol 934P (F1) showed the highest release rate. With the exception of the formulation F1, the neutral polymers tended to give higher relate rates than the anionic polymers. For oral tissue treatment, the optimum has to be balanced between the residence time (adhesiveness) of the formulations and the release rate of the drug. The formulations containing the anionic polymers: Carbopol 934P or SCMC possessed suitable physical properties (appearance, pH and viscosity). In addition, for anionic polymer formulations, justifiable mucoadhesive properties and reasonable release rates of nicotinamide were achieved. Accordingly, these gel formulations may be applied for the treatment of oral mucosal lesions.Keywords: Nicotinamide, bioadhesive polymer, mucoadhesiveness, release rate, gel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26921818 Surfactant Stabilized Nanoemulsion: Characterization and Application in Enhanced Oil Recovery
Authors: Ajay Mandal, Achinta Bera
Abstract:
Nanoemulsions are a class of emulsions with a droplet size in the range of 50–500 nm and have attracted a great deal of attention in recent years because it is unique characteristics. The physicochemical properties of nanoemulsion suggests that it can be successfully used to recover the residual oil which is trapped in the fine pore of reservoir rock by capillary forces after primary and secondary recovery. Oil-in-water nanoemulsion which can be formed by high-energy emulsification techniques using specific surfactants can reduce oil-water interfacial tension (IFT) by 3-4 orders of magnitude. The present work is aimed on characterization of oil-inwater nanoemulsion in terms of its phase behavior, morphological studies; interfacial energy; ability to reduce the interfacial tension and understanding the mechanisms of mobilization and displacement of entrapped oil blobs by lowering interfacial tension both at the macroscopic and microscopic level. In order to investigate the efficiency of oil-water nanoemulsion in enhanced oil recovery (EOR), experiments were performed to characterize the emulsion in terms of their physicochemical properties and size distribution of the dispersed oil droplet in water phase. Synthetic mineral oil and a series of surfactants were used to prepare oil-in-water emulsions. Characterization of emulsion shows that it follows pseudo-plastic behaviour and drop size of dispersed oil phase follows lognormal distribution. Flooding experiments were also carried out in a sandpack system to evaluate the effectiveness of the nanoemulsion as displacing fluid for enhanced oil recovery. Substantial additional recoveries (more than 25% of original oil in place) over conventional water flooding were obtained in the present investigation.Keywords: Nanoemulsion, Characterization, Enhanced Oil Recovery, Particle Size Distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50301817 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses
Authors: M. Y. Ismail, Arslan Kiyani
Abstract:
Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.
Keywords: Numerical model, Reflectarray resonant elements, Scattering parameter measurements, Variable substrate thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17231816 The Role of Vibro-Stone Column for Enhancing the Soft Soil Properties
Authors: Mohsen Ramezan Shirazi, Orod Zarrin, Komeil Valipourian
Abstract:
This study investigated the behavior of improved soft soils through the vibro replacement technique by considering their settlements and consolidation rates and the applicability of this technique in various types of soils and settlement and bearing capacity calculations.Keywords: Bearing capacity, expansive clay, stone columns, vibro techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38831815 On Generalized Exponential Fuzzy Entropy
Authors: Rajkumar Verma, Bhu Dev Sharma
Abstract:
In the present communication, the existing measures of fuzzy entropy are reviewed. A generalized parametric exponential fuzzy entropy is defined.Our study of the four essential and some other properties of the proposed measure, clearly establishes the validity of the measure as an entropy.Keywords: fuzzy sets, fuzzy entropy, exponential entropy, exponential fuzzy entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28551814 Modeling and Analysis of a Cruise Control System
Authors: Anthony Spiteri Staines
Abstract:
This paper examines the modeling and analysis of a cruise control system using a Petri net based approach, task graphs, invariant analysis and behavioral properties. It shows how the structures used can be verified and optimized.Keywords: Software Engineering, Real Time Analysis andDesign, Petri Nets, Task Graphs, Parallelism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23621813 Generalised Slant Weighted Toeplitz Operator
Authors: S. C. Arora, Ritu Kathuria
Abstract:
A slant weighted Toeplitz operator Aφ is an operator on L2(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L2(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties.Keywords: Slant weighted Toeplitz operator, weighted multiplicationoperator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11431812 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings
Authors: Mohammad Talha, B. N. Singh
Abstract:
This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.
Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23341811 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper
Authors: A. Ouargui, N. Belouaggadia, M. Ezzine
Abstract:
In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.
Keywords: Building, composite material, insulation, thermal conductivity, paper residue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6361810 Subpixel Detection of Circular Objects Using Geometric Property
Authors: Wen-Yen Wu, Wen-Bin Yu
Abstract:
In this paper, we propose a method for detecting circular shapes with subpixel accuracy. First, the geometric properties of circles have been used to find the diameters as well as the circumference pixels. The center and radius are then estimated by the circumference pixels. Both synthetic and real images have been tested by the proposed method. The experimental results show that the new method is efficient.Keywords: Subpixel, least squares estimation, circle detection, Hough transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21371809 Mechanical Properties of 3D Noninterlaced Cf/SiC Composites Prepared through Hybrid Process (CVI+PIP)
Authors: A. Udayakumar, M. Rizvan Basha, M. Stalin, V.V Bhanu Prasad
Abstract:
Three dimensional non-Interlaced carbon fibre reinforced silicon carbide (3-D-Cf/SiC) composites with pyrocarbon interphase were fabricated using isothermal chemical vapor infiltration (ICVI) combined with polymer impregnation pyrolysis (PIP) process. Polysilazane (PSZ) is used as a preceramic polymer to obtain silicon carbide matrix. Thermo gravimetric analysis (TGA), Infrared spectroscopic analysis (IR) and X-ray diffraction (XRD) analysis were carried out on PSZ pyrolysed at different temperatures to understand the pyrolysis and obtaining the optimum pyrolysing condition to yield β-SiC phase. The density of the composites was 1.94 g cm-3 after the 3-D carbon preform was SiC infiltrated for 280 h with one intermediate polysilazane pre-ceramic PIP process. Mechanical properties of the composite materials were investigated under tensile, flexural, shear and impact loading. The values of tensile strength were 200 MPa at room temperature (RT) and 195 MPa at 500°C in air. The average RT flexural strength was 243 MPa. The lower flexural strength of these composites is because of the porosity. The fracture toughness obtained from single edge notched beam (SENB) technique was 39 MPa.m1/2. The work of fracture obtained from the load-displacement curve of SENB test was 22.8 kJ.m-2. The composites exhibited excellent impact resistance and the dynamic fracture toughness of 44.8 kJ.m-2 is achieved as determined from instrumented Charpy impact test. The shear strength of the composite was 93 MPa, which is significantly higher compared 2-D Cf/SiC composites. Microstructure evaluation of fracture surfaces revealed the signatures of fracture processes and showed good support for the higher toughness obtained.
Keywords: 3-D-Cf/SiC, charpy impact test, composites, dynamic fracture toughness, polysilazane, pyrocarbon, Interphase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27391808 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix
Authors: Jiri Plocek, Petr Holec, Simona Kubickova, Barbara Pacakova, Irena Matulkova, Alice Mantlikova, Ivan Nemec, Daniel Niznansky, Jana Vejpravova
Abstract:
This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nanocrystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nanocomposites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900−1200 ◦C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nanocrystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ∼4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nanoparticles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nanocrystals were found to be just moderately modified in comparison to the bulk phases.
Keywords: Chromite, Fourier transform infrared spectroscopy, agnetic properties, nanocomposites, Raman spectroscopy, Rietveld refinement, sol-gel method, spinel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28221807 The effect of Gamma Irradiation on the Nutritional Properties of Functional Products of the Green Banana
Authors: Magda S. Taipina, Maria L. Garbelotti, Mariana G.B. Cadioli
Abstract:
Banana is one of the most consumed fruits in the tropics and subtropics. Brazil accounts for about 9% of the world banana production. However, the production losses are as high as 30 to 40% and even much higher in some developing countries. The green banana flour is a complex carbohydrate source, including a high total starch (73.4%), resistant starch (17.5%) with functional properties. Gamma irradiation is considered to be an alternative method for food preservation. It has been performed due to the need of extending the shelf - life of foods, whilst maintaining their safety and avoiding one of the main concerns: the nutrient loss. In this work data about on the effects of ionizing radiation on the physicochemical analysis (carbohydrate, proteins, lipids, alimentary fiber, moistures and ashes) of Brazilian functional products (biscuits and bread) of the green banana pulp are presented. The caloric value was calculated. No significant difference was observed between the samples of irradiated and non – irradiated green banana biscuits with the following determinations: carbohydrates, proteins, alimentary fiber and ashes. Only a small significant difference was found in lipids (macronutrients). The results of physical chemical analysis of the irradiated and non- irradiated green banana bread non- irradiated showed no significant difference with the following determinations: carbohydrates, lipids (macronutrients), moisture, ashes and caloric value. A small difference was found in proteins (macronutrients). Irradiation of functional products (biscuits and bread) with doses of 1 and 3kGy maintained their original macronutrients content, showing good radioresistance.
Keywords: Irradiation, Functional Food, Nutritional value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681806 Laplace Transformation on Ordered Linear Space of Generalized Functions
Authors: K. V. Geetha, N. R. Mangalambal
Abstract:
Aim. We have introduced the notion of order to multinormed spaces and countable union spaces and their duals. The topology of bounded convergence is assigned to the dual spaces. The aim of this paper is to develop the theory of ordered topological linear spaces La,b, L(w, z), the dual spaces of ordered multinormed spaces La,b, ordered countable union spaces L(w, z), with the topology of bounded convergence assigned to the dual spaces. We apply Laplace transformation to the ordered linear space of Laplace transformable generalized functions. We ultimately aim at finding solutions to nonhomogeneous nth order linear differential equations with constant coefficients in terms of generalized functions and comparing different solutions evolved out of different initial conditions. Method. The above aim is achieved by • Defining the spaces La,b, L(w, z). • Assigning an order relation on these spaces by identifying a positive cone on them and studying the properties of the cone. • Defining an order relation on the dual spaces La,b, L(w, z) of La,b, L(w, z) and assigning a topology to these dual spaces which makes the order dual and the topological dual the same. • Defining the adjoint of a continuous map on these spaces and studying its behaviour when the topology of bounded convergence is assigned to the dual spaces. • Applying the two-sided Laplace Transformation on the ordered linear space of generalized functions W and studying some properties of the transformation which are used in solving differential equations. Result. The above techniques are applied to solve non-homogeneous n-th order linear differential equations with constant coefficients in terms of generalized functions and to compare different solutions of the differential equation.Keywords: Laplace transformable generalized function, positive cone, topology of bounded convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12341805 Bounds on the Second Stage Spectral Radius of Graphs
Authors: S.K.Ayyaswamy, S.Balachandran, K.Kannan
Abstract:
Let G be a graph of order n. The second stage adjacency matrix of G is the symmetric n × n matrix for which the ijth entry is 1 if the vertices vi and vj are of distance two; otherwise 0. The sum of the absolute values of this second stage adjacency matrix is called the second stage energy of G. In this paper we investigate a few properties and determine some upper bounds for the largest eigenvalue.
Keywords: Second stage spectral radius, Irreducible matrix, Derived graph
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302