WASET
	%0 Journal Article
	%A D. Zare and  M. Alirezaei and  S.M. Nassiri
	%D 2012
	%J International Journal of Computer and Systems Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 69, 2012
	%T Stress Relaxation of Date at Different Temperature and Moisture Content of Product: A New Approach
	%U https://publications.waset.org/pdf/14176
	%V 69
	%X Iran is one of the greatest producers of date in the
world. However due to lack of information about its viscoelastic
properties, much of the production downgraded during harvesting
and postharvesting processes. In this study the effect of temperature
and moisture content of product were investigated on stress
relaxation characteristics. Therefore, the freshly harvested date
(kabkab) at tamar stage were put in controlled environment chamber
to obtain different temperature levels (25, 35, 45, and 55 0C) and
moisture contents (8.5, 8.7, 9.2, 15.3, 20, 32.2 %d.b.). A texture
analyzer TAXT2 (Stable Microsystems, UK) was used to apply
uniaxial compression tests. A chamber capable to control temperature
was designed and fabricated around the plunger of texture analyzer to
control the temperature during the experiment. As a new approach a
CCD camera (A4tech, 30 fps) was mounted on a cylindrical glass
probe to scan and record contact area between date and disk.
Afterwards, pictures were analyzed using image processing toolbox
of Matlab software. Individual date fruit was uniaxially compressed
at speed of 1 mm/s. The constant strain of 30% of thickness of date
was applied to the horizontally oriented fruit. To select a suitable
model for describing stress relaxation of date, experimental data were
fitted with three famous stress relaxation models including the
generalized Maxwell, Nussinovitch, and Pelege. The constant in
mentioned model were determined and correlated with temperature
and moisture content of product using non-linear regression analysis.
It was found that Generalized Maxwell and Nussinovitch models
appropriately describe viscoelastic characteristics of date fruits as
compared to Peleg mode.
	%P 681 - 686