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I. INTRODUCTION

THE systems of the form Φ, where (Φ; ◦, \), considered
by B. M. Schein [7], is a set of functions closed under the

composition “◦” of functions (and hence (Φ; ◦) is a function
semigroup) and the set theoretic subtraction “\” (and hence
(Φ; \) is a subtraction algebra in the sense of [1]). He proved
that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. B.Zelinka [9] discussed a
problem proposed by B. M. Schein concerning the structure
of multiplication in a subtraction semigroup. He solved the
problem for subtraction algebras of a special type, called the
atomic subtraction algebras. Y. B. Jun et al. [3] introduced
the notion of ideals in subtraction algebras and discussed
characterization of ideals. In [4], Y. B. Jun and H. S. Kim
established the ideal generated by a set, and discussed related
results.Near-ring theory has been developed by Pilz[6].Based
on near-ring theory, Dheena at el. [2],introduced the near-
subtraction semigroups and strongly regular near-subtraction
semigroups.

The concept of fuzzy subset was introduced by L.A.Zadeh
[8]. Fuzzy set theory is a useful tool to describe situations
in which the data are imprecise or vague. Fuzzy sets handle
such situation by attributing a degree to which a certain object
belongs to a set.K.J. Lee and C.H. Park[5] introduced the
notion of a fuzzy ideal in subtraction algebras, and give some
conditions for a fuzzy set to be a fuzzy ideal in subtraction
algebras.In this paper,we introduce the notion of fuzzy ideal
in near-subtraction semigroup and have studied their related
properties.

II. PRELIMINARIES

Definition 2.1: A non-empty set X together with a binary
operation “–”is said to be a subtraction algebra if it satisfies
the following:
(1)x − (y − x) = x.
(2)x − (x − y) = y − (y − x).
(3) (x − y) − z = (x − z) − y,for all x, y, z ∈ X .

Example 2.2: Let X = {0, a, b, 1} in which “–” is defined
by
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– 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

Then (X,−) is a subtraction algebra.
In a subtraction algebra the following holds:

(P1)x − 0 = x and 0 − x = 0.
(P2) (x − y) − x = 0.
(P3) (x − y) − y = x − y.
(P4) (x − y) − (y − x) = x − y,where 0 = x − x is an
element that does not depend on the choice of x ∈ X .

Following [9],we have the following definition of subtrac-
tion semigroup.

Definition 2.3: A non-empty set X together with the
binary operations “–” and “.” is said to be a subtraction
semigroup if it satisfies the following:
(SS1) (X;−) is a subtraction algebra.
(SS2) (X; .) is a semigroup.
(SS3) x(y − z) = xy − xz and (x − y)z = xz − yz,for all
x, y, z ∈ X .

Example 2.4: [2] Let X = {0, a, b, 1} in which “–” and “.”
are defined by

– 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

. 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Then (X,−, .) is a subtraction semigroup.
Now we have the following definition of near-subtraction
semigroup.

Definition 2.5: A non-empty set X together with the
binary operations “–” and “.” is said to be a near-subtraction
semigroup if it satisfies the following:
(NS1) (X;−) is a subtraction algebra.
(NS2) (X; .) is a semigroup.
(NS3) (x − y)z = xz − yz,for all x, y, z ∈ X .

It is clear that 0x = 0,for all x ∈ X .Similarly we can define a
near-subtraction semigroup (left).Hereafter a near-subtraction
semigroup means it is a near-subtraction semigroup(right)
only.

Example 2.6: [2] Let X = {0, a, b, 1} in which “–” and “.”
are defined by

– 0 a b 1
0 0 0 0 0
a a 0 1 b
b b 0 0 b
1 1 0 1 0

. 0 a b 1
0 0 0 0 0
a a a a a
b a 0 1 b
1 0 a b 1

Then (X,−, .) is a near-subtraction semigroup.
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Definition 2.7: A near-subtraction semigroup X is said to
be zero-symmetric if x0 = 0 for every x ∈ X .

Definition 2.8: A near-subtraction semigroup X is said
have an identity if there exists an element 1 ∈ X such that
1.x = x.1 = x,for every x ∈ X .

Definition 2.9: A non-empty subset S of a subtraction al-
gebra X is said to be a subalgebra of X ,if x−y ∈ S,whenever
x, y ∈ S.

Definition 2.10: Let (X,−, .) be a near-subtraction
semigroup . A non-empty subset I of X is called
(I1) a left ideal if I is a subalgebra of (X,−) and
xi − x(y − i) ∈ I for all x, y ∈ X and i ∈ I .
(I2) a right ideal if I is a subalgebra of (X,−) and IX ⊆ I .
(I3) an ideal if I is both a left and right ideal. IX ⊆ I .

Remark 2.11: (i) Suppose if X is a subtraction semigroup
and I is a left ideal of X ,then for i ∈ X and x, y ∈ X , we
have xi − x(y − i) = xi − (xy − xi) = xi ∈ I by Property 1
of subtraction algebra.Thus we have XI ⊆ I .
(ii) If X is a zero symmetric near-subtraction semigroup,then
for i ∈ I and x ∈ X ,we have xi−x(0−i) = xi−0 = xi ∈ X .

For the sake of completeness, now we study some concepts
of fuzzy theory.

A mapping μ : X → [0, 1] is called fuzzy set of X and the
complement of a fuzzy set μ, denoted by μ′ is the fuzzy set
in X given by μ′(x) = 1 − μ(x) for all x ∈ X .The level set
of a fuzzy set μ of X is defined as U(μ; t) = {x ∈ X|μ(x) ≥
t},for all 0 ≤ t ≤ 1.

III. FUZZY IDEALS

In what follows, let X denote a near-subtraction semi-
groups,unless otherwise specified.

Definition 3.1: A fuzzy set μ in X is called a fuzzy ideal
of X if it satisfies the following conditions:

(FI1) μ(x − y) ≥ min{μ(x), μ(y)} for all x, y ∈ X ,
(FI2) μ(ax − a(b − x)) ≥ μ(x) for all a, b, x ∈ X and
(FI3) μ(xy) ≥ μ(x),for all x, y ∈ X .

Note that μ is a fuzzy left ideal of X if it satis-
fies(FI1)and(FI2), and μ is a fuzzy right ideal of X if it
satisfies (FI1) and (FI3).

Example 3.2: Let X = {0, a, b, 1} in which “–” and “.” are
defined by

– 0 a b
0 0 0 0
a a 0 a
b b b 0

. 0 a b
0 0 0 0
a 0 a 0
b a 0 b

Then (X,−, .) is a near-subtraction semigroup.Let μ be a
fuzzy set on X defined by μ(0) = 0.8, μ(a) = 0.5 and
μ(b) = 0.3.Then by routine calculation,it is easy to prove
that μ is a fuzzy ideal of X .

Theorem 3.3: Let μ be a fuzzy left (resp. right) of X .Then
the set

Xμ = {x ∈ X|μ(x) = μ(0)}
is a left(resp.right) ideal of X .
Proof: Suppose μ is a fuzzy left ideal of X and let x, y ∈
Xμ.Then

μ(x − y) ≥ min{μ(x), μ(y)} = μ(0).

Thus x − y ∈ Xμ.
For every a, b ∈ X and x ∈ Xμ,we have

μ(ax − a(b − x)) ≥ μ(x) = μ(0).

Thus ax − a(b − x) ∈ Xμ.Hence,Xμ is a left ideal of
X .Similarly,we have the desired result for the right case.

Theorem 3.4: Let A be a non-empty subset of X and μA

be a fuzzy set in X defined by

μA(x) =
{

s , if x ∈ A,
t , otherwise.

for all x ∈ X and s, t ∈ [0, 1] with s > t.Then μA is a
fuzzy ideal of X if and only if A is an ideal of X .Moreover
XμA

= A.
Proof: Suppose μA is a fuzzy ideal of X .Let x, y ∈ A.Then

μ(x − y) ≥ min{μ(x), μ(y)} = s.

Thus,x − y ∈ A.
For every a, b ∈ X and x ∈ A,we have

μ(ax − a(b − x)) ≥ μ(x) = s.

Thus ax − a(b − x) ∈ A.
For all x, y ∈ A.Then

μ(xy) ≥ μ(x) = s.

Thus, xy ∈ A.Hence , μA is an ideal of X .
Conversely, assume that A is an ideal of X .Let x, y ∈ X .If at
least one of X and y does not belong to A,then

μA(x − y) ≥ t = min{μA(x), μA(y)}.
If x, y ∈ A then x − y ∈ A ,we have

μA(x − y) ≥ s = min{μA(x), μA(y)}.
Let a, b, x ∈ X and if x ∈ A such that ax− a(b− x) ∈ A,we
have

μA(ax − a(b − x)) ≥ s = μA(x).

If x /∈ A such that ax − a(b − x) /∈ A,we have

μA(ax − a(b − x)) ≥ t = μA(x).

For all x, y ∈ A then xy ∈ A,we have

μA(xy) ≥ s = μ(x).

Suppose x /∈ A we have

μA(xy) ≥ t = μ(x).

Hence μA is a fuzzy ideal of X .Moreover

XμA
= {x ∈ X|μA(x) = μA(0)}
= {x ∈ X|μA(x) = s}
= {x ∈ X|x ∈ A}
= A.

Corollary 3.5: Let χA be the characteristic function of a
subset A ⊆ X .Then χA is a fuzzy left(resp. right) ideal if and
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only if A is a left(resp. right) ideal.

Theorem 3.6: Let μ be a fuzzy subset of X .Then μ is a
fuzzy ideal of X if and only if each non-empty level subset
U(μ; t) of μ is an ideal of X .

Proof: Assume that μ is a fuzzy ideal of X and U(μ; t)
is a non-empty level subset of X .
(i) Since U(μ; t) is a non-empty level subset of μ, there exists
x, y ∈ U(μ; t) , μ(x−y) ≥ min{μ(x), μ(y)} = t.Thus x−y ∈
U(μ; t).
(ii) Let a, b, x ∈ U(μ; t),we have μ(ax−a(b−x)) ≥ μ(x) ≥ t.
Thus ax − a(b − x) ∈ U(μ; t).
(iii) Let x, y ∈ U(μ; t), such that μ(xy) ≥ μ(x) ≥ t.Thus
xy ∈ U(μ; t).Hence,L(μ; t) is an ideal of R.
Conversely,suppose that U(μ; t) is an ideal of X .
(i)Let if possible, μ(x0 − y0) < min{μ(x0), μ(y0)},for some
x0, y0 ∈ U(μ; t),then by taking

t0 =
1
2
{μ(x0 − y0) + min{μ(x0), μ(y0)}},

we have μ(x0 − y0) > t0,for μ(x0) ≥ t0, μ(y0) ≥ t0.Thus
x0 − y0 /∈ U(μ; t),for some x0, y0 ∈ U(μ; t).This is a
contradiction,and so μ(x−y) ≥ min{μ(x), μ(y),for allx, y ∈
U(μ; t).
(ii)Let if possible, for some x0 ∈ U(μ; t) μ(ax− (a(b−x)) <
μ(x0), for all a, b ∈ X and ,then by taking

t0 =
1
2
{μ(ax0 − a(b − x0)) + μ(x0)},

we have μ(ax0 − a(b − x0)) > t0,for μ(x0) ≥ t0, μ(y0) ≥
t0.Thus ax0 −a(b−x0) /∈ U(μ; t),for some x0 ∈ U(μ; t) and
for all a, b ∈ X .This is a contradiction,and so μ(ax − a(b −
x)) ≥ μ(x),for all x ∈ U(μ; t) and a, b ∈ X .
(iii)Let if possible, μ(x0y0) < μ(x0),for some x0, y0 ∈
U(μ; t),then by taking

t0 =
1
2
{μ(x0y0) + μ(x0)},

we have μ(x0y0) > t0,for μ(x0) ≥ t0, μ(y0) ≥ t0.Thus
x0y0 /∈ U(μ; t),for some x0, y0 ∈ U(μ; t).This is a contradic-
tion,and so μ(xy) ≥ μ(x),for allx, y ∈ U(μ; t).Hence U(μ; t)
is a fuzzy ideal of X .

Definition 3.7: Let X be a near-subtraction semigroup and
a family of fuzzy sets {μi|i ∈ I} in X .Then the intersection( ∧

i∈I

μi

)
of {μi|i ∈ I} is defined by( ∧

i∈I

μi

)
(x) = inf {μi(x)|i ∈ I}

Theorem 3.8: If {μi|i ∈ I} is a family of fuzzy ideal of

X ,then

( ∧
i∈I

μi

)
(x) is a fuzzy ideal of X .

Proof: Let {μi|i ∈ I} be a family of fuzzy ideal of X .

(i)For all x, y ∈ X ,we have( ∧
i∈I

μi

)
(x − y) = inf {μi(x − y)|i ∈ I}

≥ inf {min (μi(x), μi(y)) |i ∈ I}

= min {inf (μi(x)|i ∈ I) , inf (μi(y)|i ∈ I)}

= min

{( ∧
i∈I

μi

)
(x) ,

( ∧
i∈I

μi

)
(y)

}

(i)For all a, b, x ∈ X ,we have( ∧
i∈I

μi

)
(ax − a(b − x)) = inf {μi(ax − a(b − x))|i ∈ I}

≥ inf {μi(x)|i ∈ I}

= {inf (μi(x)|i ∈ I)}

=
( ∧

i∈I

μi

)
(x).

(iii) For all x, y ∈ X ,we have( ∧
i∈I

μi

)
(xy) = inf {μi(xy)|i ∈ I}

≥ inf {min (μi(x)) |i ∈ I}

=
( ∧

i∈I

μi

)
(x)

Hence

( ∧
i∈I

μi

)
is a fuzzy ideal of X .

Definition 3.9: Let f : X −→ X ′ be a mapping ,where X
and X ′ are non-empty sets and μ is a fuzzy subset of X .The
preimage of μ under f written μf ,is a fuzzy subset of X
defined by μf = μ(f(x)),for all x ∈ X .

Theorem 3.10: Let f : X −→ X ′ be a homomorphism of
near-subtraction semigroups. If μ is a fuzzy ideal of X ′,then
μf is a fuzzy ideal of X .
Proof: Suppose μ is a fuzzy ideal of X ′,then
(i) For all x, y ∈ X ,we have

μf (x − y) = μ (f (x − y)) = μ (f(x) − f(y))
≥ min {μ (f(x)) , μ (f(y))}
= min

{
μf (x), μf (y)

}
.

(ii) For all a, b, x ∈ X ,we have

μf (ax − a(b − x)) = μ (f (ax − a(b − x)))
= μ (f(ax) − f(a(b − x)))
= μ (f(a)f(x) − f(a)(f(b) − f(x)))
≥ μ (f(x))
= μf (x).
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(iii)For all x, y ∈ X ,we have

μf (xy) = μ (f (xy))
= μ (f(x)f(y))
≥ μ (f(y))
= μf (y).

Hence μf is a fuzzy ideal of X .
Theorem 3.11: Let f : X −→ X ′ be a homomorphism of

near-subtraction semigroup . If μf is a fuzzy ideal of X ,then
μ is fuzzy ideal of X ′.
Proof: Suppose μ is a fuzzy ideal of X ′,then
(i)Let x′, y′ ∈ X ′,there exists x, y ∈ X such that f(x) = x′

and f(y) = y′,we have

μ (x′ − y′) = μ (f (x) − f (y))
= μ (f (x − y))
= μf (x − y)
≥ min

{
μf (x), μf (y)

}
= min {μ (f(x)) , μ (f(y))}
= min {μ (x′) , μ (y′)} .

(ii)Let a′, b′, x′ ∈ X ′,there exists a, b, x ∈ X such that
f(a) = a′, f(b) = b′ and f(x) = x′,we have

μ (a′x′ − b(a′ − x′)) = μ (f(a)f(x) − f(b)(f(a) − f(x)))
= μ (f(ax) − f(b)f(a − x))
= μ (f(ax) − f(b(a − x)))
= μ (f(ax − b(a − x)))
= μf (ax − b(a − x))
≥ μf (x)
= μ (f(x))
= μ (x′) .

(iii)Let x′, y′ ∈ X ′,there exists x, y ∈ X such that f(x) =
x′ and f(y) = y′,we have

μ (x′y′) = μ (f (x) f (y)) = μ (f (xy))
= μf (xy)
≥ μf (x)
= μ (f(x))
= μ (x′)

Hence μ is a fuzzy ideal of X ′.
Definition 3.12: Let f be a mapping defined on X .If ν is

a fuzzy subset in f(X),then the fuzzy subset μ = ν ◦ f in
X(i.e., the fuzzy subset defined by μ(x) = ν(f(x)) for all
x ∈ X) is called the preimage of ν under f .

Proposition 3.13: An onto homomorphic preimage of a
fuzzy ideal of X is a fuzzy ideal.
Proof: Straight forward.

Let μ be a fuzzy subset in X and f be a mapping
defined on X .Then the fuzzy subset μf in f(X) defined by
μf (y) = sup

x∈f−1(y)

μ(x) for all y ∈ f(X) is called the image

of μ under f .A fuzzy subset μ in X is said to have an sup
property if for every subset N ⊆ X ,there exists n0 ∈ N such
that μ(n0) = sup

n∈N
μ(n).

Proposition 3.14: An onto homomorphic image of a fuzzy
ideal with sup property is fuzzy ideal.
Proof: Let f : X −→ X ′ be an onto homomorphism of near-
subtraction semigroup and let μ be a fuzzy ideal of X with
the sup property.

(i)Given x′, y′ ∈ X ′,we let x0 ∈ f−1(x′) and y0 ∈ f−1(y′)
be such that

μ (x0) = sup
n∈f−1(x′)

μ (n) , μ (y0) = sup
n∈f−1(y′)

μ (n)

respectively.Then , we have

μf (x′ − y′) = sup
z∈f−1(x′−y′)

μ (z)

≥ min {μ (x0) , μ (y0)}

= min

{
sup

n∈f−1(x′)
μ (n) , sup

n∈f−1(y′)
μ (n)

}

= min
{
μf (x′) , μf (y′)

}

(ii) Given a′, b′, x′ ∈ R′ , we let a0 ∈ f−1(a′),
b0 ∈ f−1(b′) , x0 ∈ f−1(x′) be such that

μf (a′x′ − a′(b′ − x′)) = sup
z∈f−1(a′x′−a′(b′−x′))

μ (z)

≥ μ (x0)
= sup

n∈f−1(x′)
μ (n)

= μf (x′) .

(iii)Given x′, y′ ∈ X ′,we let x0 ∈ f−1(x′) and y0 ∈
f−1(y′) be such that

μ (x0) = sup
n∈f−1(x′)

μ (n) , μ (y0) = sup
n∈f−1(y′)

μ (n)

respectively.Then , we have

μf (x′y′) = sup
z∈f−1(x′y′)

μ (z)

≥ μ (x0)
= sup

n∈f−1(x′)
μ (n)

= μf (x′)

Hence,μf is a fuzzy ideal of X ′.

IV. CHAIN CONDITIONS

Proposition 4.1: Let μ and ν be a fuzzy subset of X .If they
are fuzzy ideal of X ,then so μ ∩ ν,where μ ∩ ν is defined by
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(μ ∩ ν)(x) = min{μ(x), ν(x)} for all x,∈ X .
Proof: (i) For all x, y ∈ X ,we have

(μ ∩ ν)(x − y) = min{μ(x − y), ν(x − y)}
≥ min{min{μ(x), μ(y)},

min{ν(x), ν(y)}}
= min{(μ ∩ ν)(x), (μ ∩ ν)(y)}.

(ii) For all x, y ∈ X ,we have

(μ ∩ ν)(ax − a(b − x))
= min{μ(ax − a(b − x), ν(ax − a(b − x)}
≥ min{μ(x), ν(x)}
= (μ ∩ ν)(x).

(iii) For all x, y ∈ X ,we have

(μ ∩ ν)(xy)) = min{μ(xy), ν(xy)}
≥ min{μ(y), ν(y)}
= (μ ∩ ν)(y).

Hence,μ ∩ ν is a fuzzy ideal of X .

Theorem 4.2: Let μ be a fuzzy subset in X and
Im(μ) = {α0, α1, ..., αk},where αi < αj whenever i > j.
Let {An|n = 0, 1, ..., k} be a family of ideals of X such that
(i) A0 ⊆ A1 ⊆ ... ⊆ Ak = X ,
(ii) μ(A∗) = αn,where A∗

n = An \ An−1, A−1 = φ for all
n = 0, 1, ..., k.
Then μ is a fuzzy ideal of X .
Proof: Suppose {An|n = 0, 1, ..., k} be a family of ideals of
X .
(i) For all x, y ∈ X ,Then we discuss the following cases:If
x ∈ An and y ∈ An such that x − y ∈ An,since An is an
ideal of X .thus

μ(x − y) ≥ αn = min{μ(x), μ(y)}.
If x /∈ A∗

n and y /∈ A∗
n,then the following four cases arise:

1) x ∈ X \ An and y ∈ X \ An

2) x ∈ An−1 and y ∈ An−1

3) x ∈ X \ An and y ∈ An−1

4) x ∈ An−1 and y ∈ R \ An

But,in either cases,we know that
μ(x − y) ≥ min{μ(x), μ(y)}.

If x ∈ X \ A∗
n and y /∈ A∗

n then either y ∈ An−1 or
y ∈ X \An. It follows that either x ∈ An or x ∈ X \An.Thus

μ(x − y) ≥ min{μ(x), μ(y)}.
If x /∈ X \A∗

n and y ∈ A∗
n then by similar process we have

μ(x − y) ≥ min{μ(x), μ(y)}.
(ii)If a, b ∈ X and x ∈ An then ax − a(b − x) ∈ An.Then

μ(ax − a(b − x)) ≥ min{μ(a), μ(b)}.
If a, b ∈ X and x /∈ An then,we have

μ(ax − a(b − x)) ≥ αn = μ(x).
(iii) Similarly, for x, y ∈ X ,we have

μ(xy) ≥ μ(y).
Hence μ is a fuzzy ideal of X .
Theorem 4.3: Let {An|n ∈ N} be a family of ideals of X

which is nested,that is,X = A1 ⊃ A2 ⊃ ....Let μ be a fuzzy
subset in X defined by

μ (x) =

⎧⎨
⎩

n
n+1 if x ∈ An\An+1, n = 1, 2, 3...,

1 if x ∈
∞⋂

n=1
An .

for allx ∈ X .Then μ is a fuzzy ideal of X .

Proof: Let x, y ∈ X .
(i)Suppose that x ∈ Ak \ Ak+1 and y ∈ Ar \ Ar+1

for k = 1, 2, ...; r = 1, 2, ... .Without loss of generality,we
may assume that k ≤ r.Then x − y ∈ Ak and so

μ (x − y) ≥ k

k + 1
= min {μ (x) , μ (y)}

If x, y ∈
∞⋂

n=1
An then x − y ∈

∞⋂
n=1

An and thus

μ (x − y) = 1 = min{μ (x) , μ (y)}

If x ∈
∞⋂

n=1
An and y /∈

∞⋂
n=1

An,then there exists i ∈ N such

that y ∈ Ai \ Ai+1.It follows that x − y ∈ Ai so that

μ (x − y) ≥ i

i + 1
= min {μ (x) , μ (y)}

Similarly,we can prove that

μ (x − y) ≥ min (μ (x) , μ (y))

for all x /∈
∞⋂

n=1
An then y ∈

∞⋂
n=1

An.

(ii)Now,let a, b ∈ X .If , x ∈ Ar \ Ar+1 for some k =
1, 2, ...,then ax − a(b − x) ∈ Ak.Thus

μ (ax − a(b − x)) ≥ k

k + 1
= μ (x)

If x ∈
∞⋂

n=1
An then ax − a(b − x) ∈

∞⋂
n=1

An for all a, b ∈
X .Thus

μ (ax − a(b − x)) = 1 = μ (x) .

Assume that a ∈ Ar \ Ar+1 for some r = 1, 2, 3, ...,and

b ∈
∞⋂

n=1
An( or , a ∈

∞⋂
n=1

An and b ∈ Ar \ Ar+1 for some

r = 1, 2, 3...).Then x ∈ Ar and so

μ (ax − a(b − x)) ≥ r

r + 1
= μ(x)

(iii) Now,if x, y ∈ Ak \ Ak+1 for some r = 1, 2, 3..., then
y ∈ Ar as Ar is a ideal of X .Thus

μ (xy) ≥ r

r + 1
= μ(y).

If x, y ∈
∞⋂

n=1
An then y ∈

∞⋂
n=1

An and so

μ (xy) = 1 = μ(y).
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Hence, μ is a fuzzy ideal of X .

Let μ : X −→ [0, 1] be a fuzzy subset of X .The smallest
fuzzy ideal containing μ is called the fuzzy ideal generated
by μ, and μ is said to be n-valued if μ(X) is a finite set
of n elements.When no specific n is intended, we call μ a
finite-valued fuzzy subset.

Theorem 4.4: A fuzzy ideal ν of X is finite valued if and
only if a finite-valued fuzzy subset μ of X is generated by ν.
Proof: If ν : X −→ [0, 1] is a finite-valued fuzzy ideal of
X,then one may choose μ = ν.Consequently, assume that μ :
X −→ [0, 1] is a n-valued fuzzy subset with n distinct values
t1, t2, ..., tn,where t1 > t2 > ... > tn.Let Gi be the inverse

image of ti under μ, that is,Gi = μ−1(ti).Obviously,
j⋃

i=1

Gi ⊆
r⋃

i=1

Gi when j < r.We denote by Aj the ideal of X generated

by the set
j⋃

i=1

Gi.Then we have the following chain of ideals:

A1 ⊆ A2 ⊆ ... ⊆ An = X.

Define a fuzzy ν : X −→ [0, 1] by

ν (x) =
{

tn if ∈ An,
tj if ∈ Aj\Aj−1; j = 1, 2, ..., n − 1 .

We claim that ν is a fuzzy ideal of X and μ is generated by
ν.Let x, y ∈ X and let i and j be the smallest integer such
that x ∈ Ai and y ∈ Aj .we may assume that i > j without
loss of generality.Then x − y ∈ Ai and xy ∈ Ai and so

ν (x − y) ≥ tj = min {ti, tj} = min {ν (x) , ν (y)}
and

ν (xy) ≥ tj = ν (y) .

Now,let a, b ∈ X .If x ∈ Aj for some i < j,then x ∈ Ai as
Ai is a ideal of X .Thus

ν (ax − a(b − x)) ≥ tj = ν(x).

Hence, μ is a fuzzy ideal of X .
If x ∈ X and μ(x) = tj ,then x ∈ Gj and so x ∈ Aj .But
we get ν(x) ≥ tj = μ(x).Consequently, μ ⊆ ν.Let γ be

any fuzzy ideal of X which is a subset of μ.Then,
j⋃

i=1

Gi =

U(μ; tj) ⊆ U(γ; tj), and thus Aj ⊆ U(γ; tj).Hence,γ ⊆ μ
and μ is generated by ν.Note that | Imμ |= n =| Imν |.This
completes the proof.
A near-subtraction semigroup X is a said to be Noetherian
(see [9]) if it satisfies the ascending chain condition on ideals
of X .

Theorem 4.5: If X is a Noetherian near-subtraction semi-
group , then every fuzzy ideal of X is finite valued.
Proof: Let μ : X −→ [0, 1] be a fuzzy ideal of X which is not
finite valued.Then,there exists sequence of distinct numbers
μ(0) = t1 > t2 > ... > tn,where ti = μ(xi) for some xi ∈ R.
This sequence induces an infinite sequence of distinct ideals
of X:

U (μ; t1) ⊂ U (μ; t2) ⊂ ... ⊂ U (μ; tn) ⊂ ... .

This is a contradiction.

Combining Theorem 4.4 and Theorem 4.5,we have the
following corollary.

Corollary 4.6: If X is a Noetherian near-subtraction semi-
group, then every fuzzy ideal of X is generated by a finite
fuzzy subset in X .

V. NORMAL FUZZY IDEALS

Definition 5.1: A fuzzy ideal μ of X is said to be normal
if there exists a ∈ X such that μ(a) = 1.

We note that if μ is a normal fuzzy ideal μ of X is normal if
and only if μ(1) = 1.Let FN (X) denote the set of all normal
fuzzy ideal of X .

Theorem 5.2: Let μ be a fuzzy ideal of X and let μ+ be
a fuzzy set in X given by μ+(x) = μ(x) + 1 − μ(1),for all
x ∈ X .Then μ+ ∈ FN (X) and μ ⊆ μ+.

Proof: For any x, y, z ∈ X we have μ+(1) = μ(1) +
1 − μ(1) = 1 ≥ μ+(x) and
(i)For all x, y ∈ X ,we have

μ+(x − y) = μ(x − y) + 1 − μ(1)
≥ min{μ(x), μ(y)} + 1 − μ(1)
= min{μ(x) + 1 − μ(1), μ(y) + 1 − μ(1)}
= min{μ+(x), μ+(y)}.

(ii)For all x, a, b ∈ X ,we have

μ+(ax − a(b − x)) = μ(ax − b(x − a)) + 1 − μ(1)
≥ μ(x) + 1 − μ(1)
= μ+(x).

(iii)For all x, y ∈ X ,we have

μ+(xy) = μ(xy) + 1 − μ(1)
≥ μ(y) + 1 − μ(1)
= μ+(y).

Hence μ+ ∈ FN (X).Obviously, μ ⊆ μ+.

Corollary 5.3: If μ be a fuzzy ideal of X satisfying
μ+(a) = 0 for some a ∈ X , then μ(a) = 0.

It is clear that fuzzy ideal μ of X is normal if and only if
μ+ = μ,and for any fuzzy ideal μ of X we have (μ+)+ =
μ+.Hence if μ is a normal fuzzy ideal of X ,then(μ+)+ = μ

Theorem 5.4: Let μ be a fuzzy ideal of X and let φ :
[0, μ(0)] −→ [0, 1] be an increasing function.Let μφ be a fuzzy
set in X defined by μφ(x) = φ(μ(x)) for all x ∈ X .Then
μφ is a fuzzy ideal of X .Moreover,if φ(μ(0)) = 1 then
μφ ∈ FN (X),and if φ(t) ≥ t for all t ∈ [0, 1] then μ ⊆ μφ.
Proof: (i)Let x, y ∈ X .Then

μφ(x − y) = φ(μ(x − y))
≥ φ(min{μ(x), μ(y)})
= min{φ(μ(x)), φ(μ(y))}
= min{μφ(x), μφ(y)}.
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(ii)Let a, b, x ∈ X .Then

μφ(ax − a(b − x)) = φ(μ(ax − a(b − x)))
≥ φ(μ(x))
= μφ(x).

(iii)Let x, y ∈ X .Then

μφ(xy) = φ(μ(xy))
≥ φ(μ(y))
= μφ(y).

Hence μφ is a fuzzy ideal of X .If φ(μ(0)) = 1 then obviously
μφ is normal , and so μφ ∈ FN (X). Assume that φ(t) ≥ t
for all t ∈ [0, μ(0)].Then μφ(x) = φ(μ(x)) ≥ μ(x) for all
x ∈ X ,which proves that μ ⊆ μφ.

Theorem 5.5: Let μ ∈ FN (X) be a non-constant maximal
element of the poset (FN (X),⊆).Then μ takes only the values
0 and 1.
Proof: Since μ is normal,we have μ(0) = 1.Let μ(x) �= 1 for
some x ∈ X .We claim that μ(x) = 0.If not,then there exists
x0 ∈ X such that 0 < μ(x0) < 1.Define on X a fuzzy set
ν putting ν(x) = μ(x)+μ(x0)

2 for all x ∈ X .Then,clearly ν is
well-defined.
(i) For all x, y ∈ X ,we have

ν(x − y) =
μ(x − y) + μ(x0)

2

≥ min{μ(x), μ(y)} + μ(x0)
2

=
min{μ(x) + μ(x0), μ(y) + μ(x0)}

2

= min{μ(x) + μ(x0)
2

,
μ(y) + μ(x0)

2
}

= min{ν(x), ν(y)}.
(ii) For all a, b, x ∈ X ,we have

ν(ax − a(b − x)) =
μ(ax − a(b − x)) + μ(x0)

2

≥ μ(x) + μ(x0)
2

= ν(x).

(iii) For all x, y ∈ X ,we have

ν(xy) =
μ(xy) + μ(x0)

2

≥ μ(y) + μ(x0)
2

= ν(y).

Thus ν is a fuzzy ideal of X .By Theorem 5.2, ν+ is a maximal
fuzzy ideal of X .Note that

ν+(x0) = ν(x0) + 1 − ν(0)

=
μ(x0) + μ(x0)

2
+ 1 − μ(0) + μ(x0)

2

=
μ(x0) + 1

2
.

and ν+(x0) < 1 = μ(0)+1
2 = ν+(0).Hence ν+ is non-

constant, and μ is not a maximal element of FN (X).This is a
contradiction.

Definition 5.6: A fuzzy ideal μ of X is said to be maximal
if it satisfies:

(M1) μ is non-constant, and
(M2) μ+ is a maximal element of (FN (X),⊆).

Theorem 5.7: If a fuzzy ideal of X is maximal,then
(i) μ is normal,
(ii) μ takes only the values 0 and 1,
(iii) χμ0 = μ,where μ0 = {x ∈ X|μ(0) = 1},
(iv) μ0 is a maximal ideal of X .
Proof: Let μ be a maximal fuzzy ideal of X .Then μ+ is
a non-constant maximal element of the poset (FN (X),⊆).It
follows from the Theorem 5.5 that μ+ takes only two values
0 and 1.Note that μ+(x) = 1 if and only if μ(x) = μ(0),and
μ+(0) = 0 if and only if μ(x) = μ(0)−1.By corollary 5.3,we
have μ(x) = 0 and so μ(0) = 1.Hence μ is normal and μ+ =
μ.This proves (i) and (ii).
(iii) Obvious.
(iv) It is clear that μ0 is a proper ideal of X .Obviously μ0 �=
X because μ takes two values.Let A be an ideal containing
μ0.Then μμ0 ⊆ μA,and consequence,μ = μ0

μ ⊆ μA.Since
μ is normal,μA also is normal and takes only two values 0
and 1.But,by the assumption,μ is maximal,so μ = μA or μ =
φ,where φ(x) = 1 for all x ∈ X .In the last case μ0 = X ,which
is impossible.So,μ = μA.i.e.μA = χA.Hence μ0 = A

Definition 5.8: A fuzzy ideal μ of X is said to be complete
if it is normal and there exists z ∈ X such that μ(z) = 0.

Theorem 5.9: Let μ be a fuzzy ideal of X and let w be a
fixed element of X such that μ(1) = μ(w).Define a fuzzy set
μ∗ in X by μ∗ (x) = μ(x)−μ(w)

μ(1)−μ(w) for all x ∈ X .Then μ∗ is a
complete fuzzy ideal of X .
Proof: (i)For any x, y ∈ X ,we have

μ∗ (x − y) =
μ (x − y) − μ (w)

μ (1) − μ (w)

≥ min{μ(x), μ(y)} − μ (w)
μ (1) − μ (w)

= min
{

μ(x) − μ(w)
μ(1) − μ(w)

,
μ(y) − μ(w)
μ(1) − μ(w)

}
= min{μ∗(x), μ∗(y)}.

(ii)For any x, y ∈ X ,we have

μ∗ (ax − a(b − x)) =
μ (ax − a(b − x)) − μ (w)

μ (1) − μ (w)

≥ μ(x) − μ (w)
μ (1) − μ (w)

= μ∗(x).

(iii)For any x, y ∈ X ,we have

μ∗ (xy) =
μ (xy) − μ (w)
μ (1) − μ (w)

≥ μ(y) − μ (w)
μ (1) − μ (w)

= μ∗(y).
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Hence μ∗ ∈ FN (S).Since μ∗(w) = 0,thus μ∗ is a complete
fuzzy ideal of X .

Theorem 5.10: Every maximal fuzzy ideal of X is com-
pletely normal.
Proof: Let μ be a maximal fuzzy ideal of X .Then by Theorem
5.7 ,μ is a normal and μ = μ+ takes only two values 0
and 1.Since μ is non-constant,it follows that μ(0) = 1 and
μ(x) = 0 for some x ∈ X .Hence μ is completely normal.
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