Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses
Authors: M. Y. Ismail, Arslan Kiyani
Abstract:
Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.
Keywords: Numerical model, Reflectarray resonant elements, Scattering parameter measurements, Variable substrate thickness.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091034
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724References:
[1] G. D. G. Berry, R.G. Malech and W. A. Kennedy, "The Reflectarray Antenna”, IEEE Trans. on Antennas and Propagat., Vol. AP11, Nov 1963.
[2] J. Huang and J. Encinar, "Reflectarray Antennas”, Wiley, Interscience, 2007.
[3] J. Huang, "Analysis of a Microstrip Reflectarray Antenna for Microspacecraft Applications”, TDA Progress Report 42-120, 1995.
[4] D. M. Pozar and S. D. Targonski, H. D. Syrigos, "Design of Millimeter Wave Microstrip Reflectarrays”, IEEE Tran. on Antenns and Propagat., Vol 45, No. 2, pp. 287-296, 1997.
[5] R. D. Javor, X. D. Wu and K. Chang, "Design and Performance of Microstrip Reflectarray Antenna,” IEEE Transactions on Antennas and Propagation, Vol. 43, No. 9, pp. 932-938, 1995.
[6] N. F. Kiyani and M. Hajian, "Design, Analysis and Measurements of Reflectarray Using Variable Length Microstrip Patch Antennas at Ka-Band,” The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, pp. 1-5, 2007.
[7] S. D. Targonski and D. M. Pozar, "Analysis and Design of a Microstrip Reflectarray Using Patches of Variable Size,” IEEE Antennas and Propagation Society International Symposium, Vol. 3, pp. 1820-1823, 1994.
[8] J. Huang and R. J. Pogorzelski, "Microstrip Reflectarray with Elements Having Variable Rotation Angle,” IEEE Antennas and Propagation Society International Symposium, Vol. 2, pp. 1280-1283, 1993.
[9] M. E. Bialkowski, A.M. Abbosh and K. H. Sayidmarie "Investigations into Phasing Characteristics of Printed Single and Double Cross Elements for Use in a Single Layer Microstrip Reflectarray,” IEEE Antennas and Propagation Society International Symposium, 2008.
[10] D. M. Pozar and S. D. Targonski, "A Microstrip Reflectarray Using Crossed Dipoles,” IEEE Antennas and Propagation Society International Symposium, Vol. 2, pp. 1008-1011, 1998.
[11] N. Misran, R. Cahill and V.F. Fusco, "Reflection Phase Response of Microstrip Stacked Ring Elements”, Electronics Letters, Vol. 38, No.8, pp. 356-357, 2002.
[12] K. H. Sayidmarie and M. E. Bialkowski, "Multi-Ring Unit Cells for Increased Phasing Range in Single Layer Microstrip Reflectarrays,” Proceedings of iWAT, pp. 163-166, 2008.
[13] W. Hu, M. Y. Ismail, R. Cahil, J. A. Encinar, V. F. Fusco, H. S. Gamble, D. Linton, R. Dickie, N. Grant, and S. P. Rea, " Liquid-Crystal-Based Reflectarray Antenna with Electronically Switchable Monopulse Patterns”, Electronics Letters, Vol. 43, No. 14, 2007.
[14] M. Y. Ismail and M. Inam, "Analysis of Design Optimization of Bandwidth and Loss Performance of Reflectarray Antennas Based On Material Properties”, Modern Applied Sci. J. CCSE., Vol. 4, No.1, pp. 28-35, 2010.
[15] D. M. Pozar and S. D. Targonski, "A Shaped-Beam Microstrip Patch Reflectarray”, IEEE Trans. on Antennas and Propagat., Vol. 47, No. 7, February 1999.
[16] K. Y. SZE and L. Shafal, "Analysis of Phase Variation Due to Varying Patch Length in a Microstrip Reflectarray”, IEEE Trans. on Antennas and Propagat., Vol. 46, No. 7, pp. 1134-1137.
[17] J. A. Encinar, M. Arrebola, M. Dejus and C. Jouve, "Design of a 1-Meter Reflectarray for DBS Application with 15% Bandwidth”, 1st European Conference on Antennas and Propagation, pp. 1-5, 2006.
[18] M. Y. Ismail, M. Inam and A. M. A. Zain, "Reflectivity of Reflectarrays Based On Dielectric Substrates”, American Journal of Engineering and Applied Sciences, pp. 180-185, 2010.
[19] Arslan Kiyani and M. Y. Ismail, "Design and Analysis of High Performance Reflectarray Resonant Elements”, Procedia Engineering, Vol. 53, pp. 248-254, 2013.
[20] M. Y. Ismail and Arslan Kiyani, "Investigation of Reflection Area on Strategic Reflectarray Resonant Elements”, International Symposium on Wireless Technology and Applications (ISWTA), pp. 363-367, 2013.
[21] M. Y. Ismail and M. Inam, "Resonant Elements for Tunable Reflectarray Antenna Design”, International Journal of Antennas and Propagation, Vol. 2012, pp. 1-6, 2012.