Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

Authors: Jiri Plocek, Petr Holec, Simona Kubickova, Barbara Pacakova, Irena Matulkova, Alice Mantlikova, Ivan Nemec, Daniel Niznansky, Jana Vejpravova

Abstract:

This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nanocrystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nanocomposites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900−1200 ◦C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nanocrystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ∼4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nanoparticles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nanocrystals were found to be just moderately modified in comparison to the bulk phases.

Keywords: Chromite, Fourier transform infrared spectroscopy, agnetic properties, nanocomposites, Raman spectroscopy, Rietveld refinement, sol-gel method, spinel.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096787

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2835

References:


[1] B. N. Kim, K. Hiraga, K. Merita and Y. Sakka, ”A high-strain-rate superplastic ceramic”, Nature, vol. 413, pp. 288-291, July 2001.
[2] K. Zakrzewska, ”Mixed oxides as gas sensors”, Thin Solid Films, vol. 391, pp. 229-239, July 2001.
[3] A. Galdikas, Z. Martunas and A. Setkus, ”SnInO-based chlorine gas sensor”, Sens. Actuators B, vol. 7, pp. 633-636, March 1992.
[4] D. H. Dawson and D. E. Williams, ”Gas-sensitive resistors: surface interaction of chlorine with semiconducting oxides”, J. Mater. Chem., vol. 6, pp. 409-414, 1996.
[5] C. V. Gropal Reddy, S. V. Manorama and V. J. Rao, ”Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite”, Sens. Actuators B, vol. 55, pp. 90-95, Apr. 1999.
[6] J. Tamaki, C. Naruo, Y. Yamamoto and M. Matsuoka, ”Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation”, Sens. Actuators B, vol. 83, pp. 190-194, March 2002.
[7] H. Aono, F. Sugimoto, Y. Mori and Y. Okajima, ”Cl2 gas sensor using BaCl2-KCl solid-electrolyte prepared by melting method”, Chem. Lett., vol. 6, pp. 1039-1042, 1993.
[8] X. Niu, D. Weiping and D. Weiumin, ”Preparation and gas sensing properties of ZnM2O4 (M = Fe, Co, Cr)”, Sens. Actuators B, vol. 99, pp. 405-409, May 2004.
[9] S. Ji, S.-H. Lee, C. Broholm, T. Y. Koo, W. Ratcliff, S.-W. Cheong et al., ”Spin-lattice order in frustrated ZnCr2O4”, Phys. Rev. Lett., vol. 103, pp. 037201, July 2009.
[10] S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim et al., ”Emergent excitations in a geometrically frustrated magnet”, Nature, vol. 418, pp. 856-858, July 2002.
[11] S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff and S.-W. Cheong, ”Local spin resonance and spin-peierls-like phase transition in a geometrically frustrated antiferromagnet”, Phys. Rev. Lett., vol. 84, pp. 3718-3721, Apr. 2000.
[12] M. Matsuda, ”Magnetic structure of a frustrated antiferromagnetic spinel CdCr2O4studied by spherical neutron polarimetry”, Phys. B, vol. 397, pp. 7-10, July 2007.
[13] Y. Yamashita and K. Ueda, ”Spin-driven Jahn-Teller distortion in a pyrochlore system”, Phys. Rev. Lett., vol. 85, pp. 4960-4963, Dec. 2000.
[14] J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda et al., ”Statics and dynamics of incommensurate spin order in a geometrically frustrated antiferromagnet CdCr2O4”, Phys. Rev. Lett., vol. 95, pp. 247204, Dec. 2005.
[15] M. Gerloch, ”The sense of Jahn-Teller distortions in octahedral copper(II) and other transition-metal complexes”, Inorg. Chem., vol. 20, pp. 638-640, Febr. 1981.
[16] N. Menyuk, K. Dwight and A. Wold, ”Ferrimagnetic spiral configurations in cobalt chromite”, J. Phys. France, vol. 25, pp. 528-536, May 1964.
[17] K. Tomiyasu, J. Fukunaga, and H. Suzuki, ”Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements”, Phys. Rev. B, vol. 70, pp. 214434, Dec. 2004.
[18] G. Lawes, B. Melot, K. Page, C Ederer, M. A. Hayward, Th. Proffen et al., ”Dielectric anomalies and spiral magnetic order in CoCr2O4” Phys. Rev. B, vol. 74, pp. 024413, July 2006.
[19] R. N. Bhowmik, R. Ranganathan and R. Nagarajan, ”Lattice expansion and noncollinear to collinear ferrimagnetic order in a MnCr2O4 nanoparticle”, Phys. Rev. B, vol. 73, pp. 144413, Apr. 2006.
[20] J. Plocek, A. Hutlova, D. Niznansky, J. Bursik, J. L. Rehspringer and Z. Micka, ”Preparation of CuFe2O4/SiO2 Nanocomposite by Sol-Gel Method”, Mater. Sci.-Poland, vol. 23, pp. 697-705, 2005.
[21] J. Plocek, A. Hutlova, D. Niznansky, J. Bursik, J. L. Rehspringer and Z. Micka, ”Preparation of ZnFe2O4/SiO2 and CdFe2O4/SiO2 nanocomposites by solgel method”, J. Non-Cryst. Solids, vol. 315, pp. 70-76, Jan. 2003.
[22] J. Rodriguez-Carvajal, FullProf User’s Guide Manual, France: CEA-CRNS, 2000.
[23] P. Scherrer, ”Bestimmung der Gr¨oße und der inneren Struktur von Kolloidteilchen mittels R¨ontgenstrahlen”, Nachr. Ges. Wiss. G¨ottingen, vol. 2, pp. 98-100, 1918.
[24] P. Garc´ıa Fasado and I. Raisnes, ”Preparation and crystal data of the spinel series Co1+2sCr2-3sSbsO4 (O≤s≤3/2)”, Polyhedron, vol. 5, pp. 787-789, 1986.
[25] D. Levy, V. Diella, A. Pavese, M. Diapiaggi, A. Sani, ”P-V equation of State, thermal expansion, and P-T stability of synthetic zincochromite (ZnCr2O4 spinel)”, Am. Mineral., vol. 90, pp. 1157-1162, 2005.
[26] S. Bord´acs, D. Varjas, I. K´ezsm´arki, G. Mih´aly, L. Baldassarre, A. Abouelsayed et al., ”Magnetic-order-induced crystal symmetry lowering in ACr2O4 ferrimagnetic spinels”, Phys. Rev. Lett., vol. 103, pp. 077205, Aug. 2009.
[27] Ch. Kant, J. Deisenhofer, T. Rudolf, F. Mayr, F. Schrettle, A. Loidl et al., ”Optical phonons, spin correlations, and spin-phonon coupling in the frustrated pyrochlore magnets CdCr2O4 and ZnCr2O4”, Phys. Rev. B, vol. 80, pp. 214417, Dec. 2009.
[28] A. A. Khassin, G. N. Kustova, H. Jobic, T. M. Yurieva, Y. A. Chesalov, G. A. Filonenkoet al., ”The state of absorbed hydrogen in the structure of reduced copper chromite from the vibration spectra The state of absorbed hydrogen in the structure of reduced copper chromite from the vibration spectra”, Phys. Chem. Chem. Phys., vol. 11, pp. 6090-6097, May 2009.
[29] J. B. Reddy and R. L. Frost, ”Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba”, Spectrochim. Acta Part A, vol. 61, pp. 1721-1728, June 2005.
[30] D. P. Shoemaker and R. Seshadri, ”Total-scattering descriptions of local and cooperative distortions in the oxide spinel Mg1-xCuxCr2O4 with dilute Jahn-Teller ions”, Phys. Rev. B, vol. 82, pp. 214107, Dec. 2010.
[31] M. M. Sinha, ”Vibrational analysis of optical phonons in mixed chromite spinels”, Nucl. Instrum. Methods Phys. Res. Sect. B, vol. 153, pp. 183-185, June1999.
[32] Z. V. Stanojevi´c Marinkovi´c, N. Romˇcevi´c, B. Stojanovi´c, ”Spectroscopic study of spinel ZnCr2O4 obtained from mechanically activated ZnO-Cr2O3 mixtures”, J. Eur. Ceram. Soc., vol. 27, pp. 903-907, 2007.
[33] Z. Wang, P. Lazor, S. K. Saxena, G. Artioli, ”High-pressure Raman spectroscopic study of spinel (ZnCr2O4)”, J. Solid State Chem., vol. 165, pp. 165-170, Apr. 2002.
[34] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Atime, Y. Tokura, ”Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide”, Phys. Rev. Lett., vol. 96, pp. 207204, May 2006.