Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30172
Generalised Slant Weighted Toeplitz Operator

Authors: S. C. Arora, Ritu Kathuria

Abstract:

A slant weighted Toeplitz operator Aφ is an operator on L2(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L2(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties.

Keywords: Slant weighted Toeplitz operator, weighted multiplicationoperator.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075475

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774

References:


[1] S.C. Arora and Ritu Kathuria, Properties of slant weighted Toeplitz operator. Annals of Functional Analysis, (to appear).
[2] M.C. Ho, Properties of Slant Toeplitz Operators. Indiana Univ. Math. J., 45(3) (1996), 843-862.
[3] Vasile Lauric, On a weighted Toeplitz operator and its commutant. Int. J. Math. & Math. Sci., 6 (2005), 823-835.
[4] A.L. Shields, Weighted shift operators and analytic function theory. Topics in Operator Theory, Math. Surveys 13, Amer. Math. Soc. Providence, R.I., 1974.
[5] O. Toeplitz, Zur theorie der quadratishen and bilinearan Formen Von unendlichvielen, Veranderlichen. Math. Ann. 70 (1911), 351-376.
[6] Helson and Szego, A problem in prediction theory. Ann. Math. Pura Appl. 51 (1960), 107-138.
[7] T. Goodman, C. Micchelli and J. Ward. Spectral radius formula for subdivision operators. Recent Advances in Wavelet Analysis, ed. L. Schumaker and G. Webb, Academic Press (1994), 335-360.
[8] L. Villemoes, Wavelet analysis of refinement equations. SIAM J. Math. Analysis 25 (1994), 1433-1460.