Search results for: viscoelastic material properties.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4234

Search results for: viscoelastic material properties.

3244 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633
3243 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, high efficiency, power generation devices, transition metal dichalcogenides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
3242 Gorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules

Authors: Jianmin Xing, Rufeng Xing

Abstract:

In this paper we study some properties of GC-projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC-projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.

Keywords: Semidualizing module, C-projective(injective, flat), GC-projective (injective, flat), Commutative ring; Localizations .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
3241 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali

Abstract:

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
3240 Simulating Laboratory Short Term Aging to Suit Malaysian Field Conditions

Authors: Meor O. Hamzah, Seyed R. Omranian, Ali Jamshidi, Mohd R M. Hasan

Abstract:

This paper characterizes the effects of artificial short term aging in the laboratory on the rheological properties of virgin 80/100 penetration grade asphalt binder. After several years in service, asphalt mixture started to deteriorate due to aging. Aging is a complex physico-chemical phenomenon that influences asphalt binder rheological properties causing a deterioration in asphalt mixture performance. To ascertain asphalt binder aging effects, the virgin, artificially aged and extracted asphalt binder were tested via the Rolling Thin film Oven (RTFO), Dynamic Shear Rheometer (DSR) and Rotational Viscometer (RV). A comparative study between laboratory and field aging conditions were also carried out. The results showed that the specimens conditioned for 85 minutes inside the RTFO was insufficient to simulate the actual short term aging caused that took place in the field under Malaysian field conditions

Keywords: Asphalt binder, Short term aging, Rheological properties, Viscosity, Temperature susceptibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
3239 Roundness Deviation Measuring Strategy at Coordination Measuring Machines and Conventional Machines

Authors: Lenka Ocenasova, Bartosz Gapinski, Robert Cep, Linda Gregova, Branimir Barisic, Jana Novakova, Lenka Petrkovska

Abstract:

Today technological process makes possible surface control of producing parts which is needful for product quality guarantee. Geometrical structure of part surface includes form, proportion, accuracy to shape, accuracy to size, alignment and surface topography (roughness, waviness, etc.). All these parameters are dependence at technology, production machine parameters, material properties, but also at human, etc. Every parameters approves at total part accuracy, it is means at accuracy to shape. One of the most important accuracy to shape element is roundness. This paper will be deals by comparison of roughness deviations at coordination measuring machines and at special single purpose machines. Will describing measuring by discreet method (discontinuous) and scanning method (continuous) at coordination measuring machines and confrontation with reference method using at single purpose machines.

Keywords: Coordinating Measuring Machines (CMM), Measuring Strategy, Roughness Deviation, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
3238 Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials

Authors: Aman Patidar, Dipankar Sarkar, Manish Pal

Abstract:

Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.

Keywords: HMA, nanosilica, NSMB, temperature, TSR, UMB, WMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
3237 Chemical, Pasting and Sensory Properties of Whole Fermented Maize (Ogi) Fortified with Pigeon Pea Flour

Authors: S. B. Fasoyiro, K. A. Arowora

Abstract:

Pigeon pea (Cajanus cajan) blanched for 20min was dehulled and milled into flour. The flour was incorporated into dried whole fermented maize (Ogi) at five levels. The resultant products were analyzed for chemical and pasting properties. The fortified Ogi samples were also assessed for sensory attributes: appearance, color, flavor, mouth feel and overall acceptability. The protein content in the whole Ogi fortified samples was in the range of 11.2-16.6% and crude fibre 3.22-3.46%. Fortified whole Ogi with pigeon pea at 30%, 40% and 50% of inclusion with pigeon pea flour has higher protein, crude fibre and ash content. Varying range of pasting quality was recorded for the blends, pasting temperature for fortified Obi was in the range of 45.3-49.50C and peak time 5.05-5.210C. The sensory acceptability of the whole Ogi fortified blends prepared into gruel has higher acceptability for various qualities in comparison with the traditional Ogi gruel.

Keywords: Maize Ogi, pigeon pea, chemical, pasting, sensory properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
3236 Effects of Geometry on Intensity of Singular Stress Fields at the Corner of Single-Lap Joints

Authors: Yu Zhang, Nao-Aki Noda, Kentaro Takaishi

Abstract:

This paper discusses effects of adhesive thickness, overlap length and material combinations on the single-lap joints strength from the point of singular stress fields. A useful method calculating the ratio of intensity of singular stress is proposed using FEM for different adhesive thickness and overlap length. It is found that the intensity of singular stress increases with increasing adhesive thickness, and decreases with increasing overlap length. The increment and decrement are different depending on material combinations between adhesive and adherent.

Keywords: Adhesive thickness, Overlap length, Intensity ofsingular stress, Single-lap joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
3235 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
3234 Seismic Assessment of Old Existing RC Buildings on Madinah with Masonry Infilled Using Ambient Vibration Measurements

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

Early pre-code reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Amongst these, an existing old RC building in Madinah city (KSA) is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using commercial structural analysis software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results summarized and discussed.

Keywords: Seismic Assessment, Pushover Analysis, Ambient vibration, Modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
3233 The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete

Authors: Hyun-Woo Cho, Jae-Heum Moon, Jang-Hwa Lee

Abstract:

In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.

Keywords: Steel Fiber Reinforced Concrete, Bending Toughness, Direct tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
3232 Garden Culture in Islamic Civilization: A Glance at the Birth, Development and Current Situation

Authors: Parisa Göker

Abstract:

With the birth of Islam, the definitions of paradise in Quran have spread across three continents since 7th century, showing itself in the palace gardens as a reflection of Islamic Culture. The design characteristics of Islamic gardens come forth with the influence of religious beliefs, as well as taking its form as per the cultural, climatic and soil characteristics of its geography, and showing its difference. It is possible to see these differences from the garden examples that survived to present time from the civilizations in the lands of Islamic proliferation. The main material of this research is the Islamic gardens in Iran and Spain. Field study was carried out in Alhambra Palace in Spain, Granada and Shah Goli garden in Iran, Tabriz. In this study, the birth of Islamic gardens, spatial perception of paradise, design principles, spatial structure, along with the structural/plantation materials used are examined. Also the characteristics and differentiation of the gardens examined in different cultures and geographies have been revealed. In the conclusion section, Iran and Spain Islamic garden samples were evaluated and their properties were determined.

Keywords: Islamic civilization, Islamic architecture, cultural landscape, Islamic garden.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
3231 Effect of Packaging Methods and Storage Time on Oxidative Stability of Traditional Fermented Sausage

Authors: Vladimir M. Tomović, Branislav V. Šojić, Predrag M. Ikonić, Ljiljana S. Petrović, Anamarija I. Mandić, Natalija R. Džinić, Snežana B. Škaljac, Tatjana A. Tasić, Marija R. Jokanović

Abstract:

In this paper influence of packaging method (vacuum and modified atmosphere packaging) on lipid oxidative stability and sensory properties of odor and taste of the traditional sausage Petrovská klobása were examined. These parameters were examined during storage period (7 months). In the end of storage period, vacuum packed sausage showed better oxidative stability. Propanal content was significantly lower (P<0.05) in vacuum packed sausage compared to these values in unpacked and modified atmosphere packaging sausage. Hexanal content in vacuum packed sausage was 1.85 μg/g, in MAP sausage 2.98 μg/g and in unpacked sausage 4.94 μg/g. After 2 and 7 months of storage, sausages packed in vacuum had the highest grades for sensory properties of odor and taste.

Keywords: Lipid oxidation, MAP, sensory properties, traditional sausage, vacuum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
3230 Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo

Authors: Z. Rihova, K. Saksl, C. Siemers, D. Ostroushko

Abstract:

Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.

Keywords: Alloy 6246, machining, tool wear, optical microscopy, SEM, EDX analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
3229 Impact of Carbonation on Lime-Treated High Plasticity Index Clayey Soils

Authors: Saurav Bhattacharjee, Syam Nair

Abstract:

Lime stabilization is a sustainable and economically viable option to address strength deficiencies of subgrade soils. However, exposure of stabilized layers to environmental elements can lead to a reduction in post-stabilization strength gain expected in these layers. The current study investigates the impact of carbonation on the strength properties of lime-treated soils. Manufactured soils prepared using varying proportions of bentonite silica mixtures were used in the study. Lime-treated mixtures were exposed to different atmospheric conditions created by varying the concentrations of CO₂ in the testing chamber. The impact of CO₂ diffusion was identified based on changes in carbonate content and unconfined compressive strength (UCS) properties. Changes in soil morphology were also investigated as part of the study. The rate of carbonation was observed to vary polynomially (2nd order) with exposure time. The strength properties of the mixes were observed to decrease with exposure time.

Keywords: Manufactured soil, carbonation, morphology, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75
3228 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz, Rahmah Mohamed, Mohd Muizz Fahimi M.

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical, mechanical and morphology properties were investigated. Field Emission Scanning Microscope (FeSEM) was used to investigate the impact fracture surfaces of the hybrid composite. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
3227 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4358
3226 A Review of Current Trends in Thin Film Solar Cell Technologies

Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya

Abstract:

Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.

Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
3225 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: Anila stove, biochar, soil conditioning materials, temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
3224 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
3223 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy

Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He

Abstract:

The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.

Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
3222 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

Authors: Bachir Chemani, Halima Chemani

Abstract:

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25mm to 1.60mm.

Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Keywords: Clay, coal, resistance to compression, insulating bricks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
3221 A Simple Device for in-situ Direct Shear and Sinkage Tests

Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Coust´e, A. Agarwal, R. Hurley, J. Andrade

Abstract:

This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be inferred. This device has been designed for a laboratory setting, but with few modifications, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.

Keywords: Simple shear, friction angle, Bekker parameters, device, regolith.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
3220 Physical Properties and Stability of Emulsions as Affected by Native and Modified Yam Starches

Authors: Nor Hayati Ibrahim, Shamini Nair Achudan

Abstract:

This study was conducted in order to determine the physical properties and stability of mayonnaise-like emulsions as affected by modified yam starches. Native yam starch was modified via pre-gelatinization and cross-linking phosphorylation procedures. The emulsions (50% oil dispersed phase) were prepared with 0.3% native potato, native yam, pre-gelatinized yam and cross-linking phosphorylation yam starches. The droplet size of surface weighted mean diameter was found to be significantly (p < 0.05) lower in the sample with cross-linking phosphorylation yam starch as compared to other samples. Moreover, the viscosity of the sample with pregelatinized yam starch was observed to be higher than that of other samples. The phase separation stability was low in the freshly prepared and stored (45 days, 5°C) emulsions containing native yam starch. This study thus generally suggested that modified yam starches were more suitable (i.e. better physical properties and stability) to be used as stabilizers in a similar system i.e. light mayonnaises, rather than a native yam starch.

Keywords: Oil-in-water emulsions, low-fat mayonnaises, modified yam starches, droplet size distribution, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
3219 Experimental Study of Adsorption Properties of Acid and Thermal Treated Bentonite from Tehran (Iran)

Authors: H. R. Moghadamzadeh, M. Naimi, H. Rahimzadeh, M. Ardjmand, V. M. Nansa, A. M. Ghanadi

Abstract:

The Iranian bentonite was first characterized by Scanning Electron Microscopy (SEM), Inductively Coupled Plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), X-ray Diffraction (XRD) and BET. The bentonite was then treated thermally between 150°C-250°C at 15min, 45min and 90min and also was activated chemically with different concentration of sulphuric acid (3N, 5N and 10N). Although the results of thermal activated-bentonite didn-t show any considerable changes in specific surface area and Cation Exchange Capacity (CEC), but the results of chemical treated bentonite demonstrated that such properties have been improved by acid activation process.

Keywords: Acid activation, Bentonite, CEC, Thermal activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
3218 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures

Authors: J. Hroudova, M. Sedlmajer, J. Zach

Abstract:

Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.

Keywords: Thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
3217 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: Foamed concrete, Fibres, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4721
3216 Effects of Aggressive Ammonium Nitrate on Durability Properties of Concrete Using Sandstone and Granite Aggregates

Authors: L. Wong, H. Asrah, M.E. Rahman, M.A. Mannan

Abstract:

The storage of chemical fertilizers in concrete building often leads to durability problems due to chemical attack. The damage of concrete is mostly caused by certain ammonium salts. The main purpose of the research is to investigate the durability properties of concrete being exposed to ammonium nitrate solution. In this investigation, experiments are conducted on concrete type G50 and G60. The leaching process is achieved by the use of 20% concentration solution of ammonium nitrate. The durability properties investigated are water absorption, volume of permeable voids, and sorptivity. Compressive strength, pH value, and degradation depth are measured after a certain period of leaching. A decrease in compressive strength and an increase in porosity are found through the conducted experiments. Apart from that, the experimental data shows that pH value decreases with increased leaching time while the degradation depth of concrete increases with leaching time. By comparing concrete type G50 and G60, concrete type G60 is more resistant to ammonium nitrate attack.

Keywords: Normal weight concrete durability, Aggressive Ammonium Nitrate Solution, G50 & G60 concretes, Chemical attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6652
3215 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras

Abstract:

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217