Gorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Gorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules

Authors: Jianmin Xing, Rufeng Xing

Abstract:

In this paper we study some properties of GC-projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC-projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.

Keywords: Semidualizing module, C-projective(injective, flat), GC-projective (injective, flat), Commutative ring; Localizations .

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091094

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757

References:


[1] M. Auslander and M. Bridger, Stable Module Theory, Amer. Math. Soc, Providence, Rhode Island, (1969).
[2] F.W. Anderson, K.R.Fuller, Rings and Categories of Modules, 2nd edition, in: Graduate Texts Mathematics, vol.13, Springer-Verlag, New York, 1992.
[3] H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102(1962)18-29.
[4] L.W.Christensen,Gorenstein dimensions, Lecture Notes in Math.,Springer- Verlag, Berlin, 2000.
[5] L.W.Christensen, H-B.Foxby, H.Holm, Beyond Totally Reflexive Modules and Back. A Survey on Gorenstein Dimensions, to appear in Commutative Algebra: Noetherian and non-Noetherian perspectives, Springer-Verlag. Available from arXiv:0812.3807v2.
[6] E.E.Enochs, O.M.G.Jenda, Gorenstein injective and projective modules, Math.Z.220(1995)611-633.
[7] E.E.Enochs, O.M.G.Jenda, On Gorenstein injective modules, Comm. Algebra, 21 (1993)3489-3501.
[8] E.E.Enochs, O.M.G. Jenda,Relative homological algebra, Walter de Gruyter, Berlin-NewYork, 2000.
[9] Foxby, Gorenstein modules and related modules, Math. Scand.31(1972)267-284.
[10] E. S.Golod, G-dimension and generalized perfect ideals , Trudy Mat. Inst. Steklov. 165(1984) 62-66.
[11] H.Holm, Gorenstein homological dimensions, J.Pure Appl.Algebra 189 (2004)167-193.
[12] H. Holm and P. Jorgensen, Semidualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2006)423-445.
[13] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47(2007)781-808.
[14] F. Kasch, Modules and Rings, London Math. Soc. Monogr., 17, Academic Press, London, 1981.
[15] Z. Liu, Z. Huang, A.Xu, Gorenstein Projective Dimension Relative to a Semidualizing Bimodule. http://math.nju.edu.cn/ huangzy/paper.
[16] M.S.Osborne, Basic Homological Algebra, Grad. Texts in Math.,Springer-Verlag, NewYork, Berlin, 2003.
[17] J.J.Rotman,An Introductions to Homological Algebra, Academic Press, New York, 1979.
[18] W.T. Tong,An Introduction to Homological Algebra, Higher Education, 1996 (in Chinese).
[19] SeanSather-Wagstaff,TirdadSharif, Diana White, AB-Contexts and Stability for Gorenstein Flat Modules with Respect to Semidualizing Modules, Algebra Represent Theor, 14(2011)403-428.
[20] D. White, Gorensten projective dimension with respect to a semidualizing module, J. Comm. Algebra 2 (2010)111-137.
[21] X.Yang and Z.Liu, Strongly Gorenstein projective, injective and flat modules, J. Algebra, 320(2008)2659-2674.