Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32731
A Review of Current Trends in Thin Film Solar Cell Technologies

Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya


Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.

Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947


[1] IEA, "Global Energy Review," 2020. (Online). Available:
[2] IPCC, "Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response," Cambridge University Press, Cambridge, UK, 2018.
[3] Y. Adediji, "A Review of Analysis of Structural Deformation of Solar Photovoltaic System under Wind-Wave Load," Engineering Archive, 2022.
[4] EIA, "How much of U.S. energy consumption and electricity generation comes from renewable energy sources?," 2022. (Online). Available:
[5] M. Z. Jacobson, M. A. Delucchi, G. Bazouin, Z. A. Bauer, C. C. Heavey, E. Fisher, S. B. Morris, D. J. Piekutowski, T. A. Vencill and T. W. Yeskoo, "100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States.," Energy Environ. Sci., vol. 8, pp. 2093-2117, 2015.
[6] IEA, 2022. (Online). Available:
[7] Y. Adediji, A. Bamigboye, J. Aboderin, A. Onyeije and E. Uzim, "Estimation of global solar radiation on horizontal surfaces using temperature-based model in Ilorin, Nigeria," Engineering Archive, 2021.
[8] Y. Jestin, "Down-Shifting of the incident Light for Photovoltaic Applications," in Comprehensive Renewable Energy, Elsevier, 2012, pp. 563-585.
[9] N. S. Levis and G. Crabtree, "Report on the Basic Energy Sciences Workshop on Solar Energy Utilization," in Basic Research Needs for Solar Energy Utilization, 2005.
[10] I. Oladimeji, Y. B. Adediji, J. B. Akintola, M. A. Afoloyan and O. Ogunbiyi, "Design and construction of an Arduino - based solar power parameter-measuring system with data logger," Arid Zone Journal of Engineering, Technology & Environment, pp. 255-268, 2020.
[11] E. Zarza-Moya, "Concentrating Solar Thermal Power," in A Comprehensive Guide to Solar Energy Systems, Academic Press, 2018, pp. 127-148.
[12] S. Sharma, K. Jain and A. Sharma, "Solar Cells: In Research and Applications—A Review," Materials Sciences and Applications, pp. 1145-1155, 2015.
[13] J. Kim et al., "Doping of crystalline silicon solar cell by making use of atmospheric and sub-atmospheric plasma jet," in 2012 Abstracts IEEE International Conference on Plasma Science, 2012.
[14] I. M. Dharmadasa, Advances in Thin film solar cells, Florida: Taylor & Francis Group, LLC, 2012.
[15] A. Khaligh and O. C. Onar, " Solar Energy Conversion and Photo-Voltaic Systems," in Energy Sources, Elsevier Inc, 2018, pp. 734-741.
[16] M. Hayat, D. Ali, K. Monyake, L. Alagha and N. Ahmed, "Solar energy—A look into power generation, challenges, and a solar-powered future.," Int. J. Energy Res., vol. 43, p. 1049–1067, 2019.
[17] A. Goetzberger, J. Luther and G. Willeke, "Solar cells: Past, present, future," Solar Energy Materials and Solar Cells, vol. 74, pp. 1-11, 2002.
[18] K. L. Chopra, P. D. Paulson and V. Dutta, "Thin-film solar cells: an overview," Progress in photovoltaics, 2004.
[19] C. M. Hussain, "Engineered Nanomaterials for Energy Applications," in Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018, pp. 751-767.
[20] G. M. Wilson and et al., "The 2020 photovoltaic technologies roadmap," Journal of Applied Physics, 2020.
[21] M. Gul, Y. Kotak and T. Muneer, "Review on recent trend of solar photovoltaic technology," Energy Exploration & Exploitation, p. 485–526, 2016.
[22] J. Pastuszak and P. Wegierek, "Photovoltaic Cell Generations and Current Research Directions for Their Development," Materials 2022, 15, vol. 15, p. 5542, 2022.
[23] M. A. Mingsukang, M. H. Buraidah and A. Arof, "Third-Generation-Sensitized Solar Cells.," Nanostructured Solar Cells., 2017.
[24] M. Riede, D. Spoltore and K. Leo, "Organic Solar Cells—The Path to Commercial Success," Advanced Energy Materials, 2020.
[25] T. K. Todorov, O. Gunawan, T. Gokmen and D. B. Mitzi, "Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell," Prog. Photovolt: Res. Appl., pp. 82-87, 2013.
[26] A. Chirila, S. Buecheler and F. Pianezzi, "Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films," Nat Mater, pp. 857-861, 2011.
[27] T. Phung, A. Gafurov and I. Kim, "IoT device fabrication using roll-to-roll printing process," Scientific Reports, 2021.
[28] C. Mebarkia, D. Dib, H. Zerfaoui and R. Belghit, "Energy Efficiency of a Photovoltaic Cell based Thin Films CZTS by Scaps," Journal of Fundamental and Applied Sciences, pp. 363-371, 2016.
[29] F. Ahmad, A. Lakhtakia, T. Anderson and P. Monk, "Corrigendum: Towards highly efficient thin-film solar cells with a graded-bandgap CZTSSe layer," Journal of Physics: Energy, 2020.
[30] D. L. Taesoo and U. E. Abasifreke, "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, pp. 1286-1297, 2017.
[31] B. Salhi, "The Photovoltaic Cell Based on CIGS: Principles and Technologies," Materials, 2022.
[32] J. Li, A. Aierken, Y. Liu, Y. Zhuang, X. Yang, J. H. Mo, R. K. Fan, Q. Y. Chen, S. Y. Zhang, Y. M. Huang and Q. Zhang, "A Brief Review of High Efficiency III-V Solar Cells for Space Application," Frontiers in Physics, vol. 8, 2021.
[33] J. Li, A. Ajerken, Y. Zhuang, P. Q. Xu, H. Q. Wu, Q. Y. Zhang, X. B. Wang, J. H. Mo, X. Yang, Q. Y. Chen, Q. Y. Chen, S. Y. Zhang, C. R. Yan and Y. Song, "1 MeV electron and 10 MeV proton irradiation effects on inverted metamorphic GaInP/GaAs/InGaAs triple junction solar cell," Sol. Energy Mater. & Solar Cell, 2021.
[34] M. Yamaguchi, F. Dimroth, J. F. Geisz and N. J. Ekins-Daukes, "Multi-junction solar cells paving the way for super high-efficiency," Journal of Applied Physics, vol. 129, p. 240901, 2021.
[35] K. Deb, K. Devendra, P. Deependra and A. Shrivastava, "InGaP Window Layer for Gallium Arsenide (GaAs) based Solar Cell Using PC1D Simulation.," Journal of Advanced Research in Dynamical and Control Systems, vol. 12, no. 7, p. 2878–2885, 2020.
[36] N. Papez, R. Dallaev, S. Talu and J. Kastyl, "Overview of the current state of Gallium Aresenide-based solar cells," Materials, pp. 1-16, 2021.
[37] N. Papez, R. Dallaey, D. Sobola, R. Macku and P. Skarvada, "Microstructural investigation of defects in photovoltaic cells by the electron beam-induced current method," Procedia Structural Integrity, pp. 595-600, 2019.
[38] Y. Sun, J. Faucher, D. Jung, M. Vaisman, C. McPheeters, P. Sharps, E. Perl, J. Simon, M. Steiner, D. Friedman and M. L. Lee, "Thermal Stability of GaAs Solar Cells for High Temperature Applications," in IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, Oregon, 2016.
[39] N. Papež, L. Škvarenina, P. Tofel and D. Sobola, "Thermal stability of gallium arsenide solar cells. In Proceedings of the SPIE, San," in proceedings of the SPIE, San Diego, 2017.
[40] N. Papež, D. Sobola, L. Škvarenina, P. Škarvada, D. Hemzal, P. Tofel and L. Grmela, "Degradation analysis of GaAs solar cells at thermal stress.," Appl. Surf. Sci., p. 212–220, 2018.
[41] E. T. Efaz, M. N. Rhaman, S. Imam, K. L. Bashar, F. Kabir, M. E. Mourtaza, S. N. Sakib and F. A. Mozahid, "A review of primary technologies of thin-film solar cells," Eng. Res. Express 3 032001, 2021.
[42] National Renewable Energy Laboratory, "Best Research-Cell Efficiency Chart," 2022. (Online). Available: (Accessed 29 8 2022).
[43] H. Kang, "Crystalline Silicon vs. Amorphous Silicon: The Significance of Structural Differences in Photovoltaic Applications.," in IOP Conf. Ser.: Earth Environ. Sci., 2021.
[44] D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell.; 28:671–3.," Appl Phys Lett, vol. 28, p. 671–3, 1976.
[45] G. O. Osayemwenre and E. L. Meye, "Confirmation of the Degradation of Single Junction Amorphous Silicon Modules (a-Si:H)," Int. Jour. of Photoenergy, 2019.
[46] L. Mansfield, "Copper Indium Gallium Diselenide Solar Cells," Photovoltaic Research, 2021.
[47] R. Jeyakumar and P. S. Udai, "Copper indium gallium selenide based Solar cells – a review," Energy and Environmental Science, 2017.
[48] R. Noufi and K. Zweibel, "High-Efficiency CdTe and CIGS Thin-Film Solar Cells," in 2006 IEEE 4th World Conference on Photovoltaic, 2006.
[49] S.-C. Chen, N.-Z. She, K.-H. Wu, Y.-Z. Chen, W.-S. Lin, J.-X. Li, F.-I. Lai and J.-Y. Juang, "Crystalline Engineering Toward Large-Scale High-Efficiency Printable Cu(In, Ga)Se2 Thin Film Solar Cells on Flexible Substrate by Femtosecond Laser Annealing Process," ACS Appl. , 2017.
[50] J. Ramanujam and U. Singh, "Copper indium gallium selenide based solar cells – a review," Energy Environ. Sci., pp. 1306-1319, 2017.
[51] H. Katagiri, in 3rd International Conference on Photonics, 2012.
[52] P. Blosch, A. Chirilă, F. Pianezzi, S. Seyrling, P. Rossbach, S. Buecheler, S. Nishiwaki and A. Tiwari, "Comparative Study of Different Back-Contact Designs for High-Efficiency CIGS Solar Cells on Stainless Steel Foils," IEEE J. Photovolt., pp. 194-199, 2011.
[53] G. Gordillo, M. Grizalez and L. Hernandez, "Structural and electrical properties of DC sputtered molyb denum films," Sol. Energy Mater. Sol. Cells, pp. 327-337, 1998.
[54] T. Anderson and B. Stanbery, "Processing of CuInSe2-BasedSolar Cells: Characterization of Deposition Processes in Terms of Chemical Reaction Analyses," NREL Technical Monitor: Bolko von Roedern, 1998.
[55] M. Moradia, R. Teimour, M. Saadat and M. Zahedifa, "Buffer layer replacement: A method for increasing the conversion efficiency of CIGS thin film solar cells," Optik, 2017.
[56] M. Nandang, T. Amrillah, A. Taufiq, Sunaryono, Aripriharta, M. Diantoro, Zulhadjri and H. Nur, "Review of CIGS-based solar cells manufacturing by structural engineering," Solar Energy, 2020.
[57] M.-G. Tsai, H.-T. Tung, I.-G. Chen, C.-C. Chen, Y.-F. Wu, X. Qi, Y. Hwu and C.-Y. Lin, "Annealing Effect on the Properties of Cu(In0.7Ga0.3) Se2 Thin Films Grown by Femtosecond Pulsed Laser Deposition.," J. Am. Ceram. Soc, pp. 2419-2423, 2013.
[58] I. Choi and D. Lee, "Preparation of CuIn1-xGaxSe2 films by metalorganic chemical vapor deposition using three precursors.," Thin Solid Films 515, p. 4778–4782, 2007.
[59] X. He, P. Ercius, J. Varley, J. Bailey, G. Zapalac, T. Nagle, D. Poplavskyy, N. Mackie, A. Bayman, V. Lordi and A. Rockett, " The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu (InGa)Se2 heterojunction.," Prog Photovolt Res Appl, pp. 255-263, 2019.
[60] C. Adel, B. Fethi and B. Brahim, "Optical and electrical characterization of CIGS thin films grown by electrodeposition route," Appl. Phys., p. 52, 2016.
[61] H.-P. Kuo, H.-A. Tsai, A.-N. Huang and W.-C. Pan, " CIGS absorber preparation by non-vacuum particle-based screen printing and RTA densification," Appl. Energy, pp. 1003-1011, 2016.
[62] A. Badgujar, K. Madhuri, S. Garner, S. Dhage and S. Joshi, "Non-vacuum route for CIGS thin film absorber on flexible glass substrates.," in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015.
[63] L. Leqi and R. N. M., "Temperature dependence of CIGS and perovskite solar cell performance: an overview," Applied Scieces, 2020.
[64] T. Mirjam, B. Nicolas, D. Felix, S. Henk, H. Vincent, L. Aikaterini, V. Zeger and Z. Miro, "Accelerated performance degradation of CIGS solar cell determined by in-situ monitoring," SPIE Solar Energy + Technology, 2014.
[65] A. Romeo and E. Artegiani, "CdTe-Based Thin Film Solar Cells: Past, Present and Future," Energies, pp. 1406-1684, 2021.
[66] D. Bonnet and H. Rabenhorst, " New results on the development of a thin film p-CdTe–n-CdS heterojunction solar," in 9th Photovoltaic Specialists Conference, Silver Spring, MD USA, 1972.
[67] R. G. Dhere and et al., "CdTe solar cell with industrial Al:ZnO on soda-lime glass," Thin Solar films 519, pp. 7142-7145, 2011.
[68] M. Imamzai, M. Aghaei, Y. H. M. Thayoob and F. Mohammadreza, "A Review on Comparison between Traditional Silicon Solar Cells and Thin- Film CdTe Solar Cells," in Proceedings National Graduate Conference 2012 (NatGrad2012), Universiti Tenaga Nasional, Putrajaya Campus, 2012.
[69] A. Bosio, D. Menossi, S. Mazzamuto and N. Romeo, "Manufacturing of CdTe thin film photovoltaic modules," Thin Solid films, pp. 7522-7525, 2011.
[70] R. W. Birkmire and B. E. McCandless, "CdTe thin film technology: Leading thin film PV into the future," Solid State and Materials Science, pp. 139-142, 2010.
[71] J. Sites, A. Munshi, J. Kephart, D. Swanson and W. Sampath, "Progress and Challenges with CdTe Cell Efficiency.," IEEE, 2016.
[72] N. Romeo, A. Bosio, S. Mazzamuto, A. Romeo and L. Vaillant-Roca, "Proceedings of 22nd European Solar Energy Conference," Milan,italy, 2007.
[73] T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, pp. 1286-1297, 2017.
[74] W. L. Rance, J. M. Burst, T. M. Barnes and e. al., "14%-efficient flexible CdTe solar cells on ultra-thin glass substrates," Applied Physics letter, 2014.
[75] K. D. Dobson, I. Visoly-Fisher, G. Hodes and D. Cahen, "Stability of CdTe/CdS thin-film solar cells," Solar Energy Materials and Solar Cells, pp. 295-352, 2000.
[76] C. Gretener, J. Perrenoud and et al., "New perspective on the performance stability of CdTe solar cells," Solar Energy Materials & Solar Cells, pp. 51-57, 2016.
[77] J. B. Wilson and J. McGill, "Amorphous-silicon MIS solar cells," IEE J Solid-State Electron Devices, p. S7–S10, 1978.
[78] H. Sai, T. Matsui and K. Matsubara, "Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell," Appl. Phys. Lett. 109, 2016.
[79] L. Kazmerski, "Growth and characterization of thin‐film compound semiconductor photovoltaic heterojunctions.," J Vac Sci Technol, p. 65–68, 1976.
[80] W. Devaney, W. Chen, J. Stewart and R. Mickelsen, " Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe2 solar cells.," Electron Devices IEEE Trans, pp. 428-433, 1990.
[81] K. Ramanathan, "Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 polycrystalline thin‐film solar cells.," Prog Photovolt: Res Appl, pp. 311-316, 1999.
[82] D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg and L. Stolt, "CIGS module manufacturing with high deposition rates and efficiencies conference," in 40th IEEE PVSC, Denver, Colorado, 2014.
[83] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, M. Friedlmeier Theresa and M. Powalla, "Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%.," Phys Status Solidi RRL, pp. 1-4, 2014.
[84] J. Gifford, "Solar Frontier hits 22.3% on CIGS cell," PV magazine., 2015.
[85] R. H. Bonnet D, "New results on the development of a thin-film p-CdTe-n-CdS heterojunction solar cell," in Photovoltaic Specialists Conference, 1972.
[86] N. Nobuo and et al., "Ceramic thin film CdTe solar cell.," Journal of Applied Physics, 1976.
[87] A. Morales-Acevedo, "Thin film CdS/CdTe solar cells: Research perspectives," Sola Energy, pp. 675-681, 2005.